

Royal Netherlands Meteorological Institute Ministry of Infrastructure and the Environment

Climate-KIC is supported by the EIT, a body of the European Union

Hail Climatology for the Netherlands (and impact on solar panels)

Hans de Moel, Lucas Wouters, Bram van 't Veen, Maaike Boon, Demi van Putten, Elco Koks, Thirza Teule, and others.

Background

- Severe Hailstorms are in the Netherlands one (of not the) most damaging natural hazard
- Most damaging event was due to hail
- 6 events in the top 20 associated with hail
- ...but there is actually little know about hail probabilities and geographic distribution

Tabel 1: Grootste schadegebeurtenissen in Nederland voor particuliere inboedel- en opstalschade in de periode 2000 t/m 2016

	▼#	▼ Schadedatum	▼ Schade in mln euro	 Omschrijving gebeurtenis
<	1	23 juni 2016	200	Hagel
	2	18 januari 2007	175	Storm (Kyrill)
	3	28 oktober 2013	115	Storm (Christian)
	4	27 oktober 2002	75	Storm
	5	28 juli 2014	75	Wolkbreuk, Amsterdam
	6	13 mei 2000	66	Vuurwerkramp
<	7	30/31 augustus 2015	52	Hagel en regen
	8	31 maart 2015	36	Storm
<	9	26 mei 2009	33	Onweer, regen, hagel
	10	14 juli 2010	31	Valwinden en windhozen
	11	28 juni 2011	29	Wolkbreuk
	12	24 juni 2016	28	zie 23 juni 2016
<	13	10 juli 2010	27	Regen, hagel, windstoten
	14	22 juni 2008	26	Hagel
	15	25 juli 2015	24	Storm
	16	26 augustus 2010	23	Langdurige regenval
	17	12 juli 2010	22	Valwinden
<	18	30 mei 2016	21	Regen, hagel, onweer
	19	5 december 2013	20	Storm
7	20	20 november 2016	20	Storm

Climate-KIC

achmea 🅻

Verbond van Verzekeraars, 201

Objective

Develop a hail climatology for the Netherlands

- Derive return periods for hail events with certain hail stone sizes
- Derive spatial differences in hail occurrence within the Netherlands

Omroep Brabant Schadeoplossing.nl

How

Combine multiple sources

- Radar data from KNMI
- European Severe Weather Database
- Weerspiegel Magazine (back to 1975)

achmea 🕻

Return Periods of Hailstone Sizes

Total of ~650 observations of hail with hail stone sizes over period 1975-2019

Table 1. The total amount of observations included in the observed-hail dataset from Weerspiegel-magazine and the ESWD.

Source	Total observations	# of hail sizes	# of hail sizes ≥ 2 cm
Weerspiegel	7.393	503	173
ESWD	166	150	148

Weerspiegel

large hail <u>to map</u>	Seiersberg Steiermark Austria (47.00 N, 15.40 E) 30-06-2016 (Thursday) 19:40 UTC (+/- 5 min.)	based on information from : an eye-witness report , a report on a website , photo or video of the event maximum hail diameter : 2 cm 2 cm Hagel in Seiersberg gemeldet, dazu Überflutungen via https://www.facebook.com/Wetterwarnung/ User Markus Schlote https://www.facebook.com/photo.php?fbid=1132449770130318&set=p.1132449770130318&type=3&theater https://scontent-we1-1.xx.fbcdn.net/131.0-8/13584854_1132449770130318_3793357191451981147_o.jpg report status : report confirmed by reliable source (QC1) contact : Aktuelle Wetterwarnungen Österreich (AWO)	
large hail <u>to mao</u>	Hitzendorf Steiermark Austria (47.03 N, 15.30 E) 30-06-2016 (Thursday) 19:33 UTC	based on information from : an eye-witness report maximum hail diameter : 2.5 cm event duration at place of observation : 30 minutes Straßen stehen unter Wasser, Hageldeckenbildung report status : plausibility check passed (QC0+) contact : Georg Wagner via SKYWARN Austria	
Jarge hail <u>to map</u>	Kloboučky South Moravian Region Czech Republic (49.13 N, 17.02 E) 30-06-2016 (Thursday) 18:50 UTC (+/- 15 min.)	based on information from : a report received by e-mail, an eye-witness report, photo or video of the event maximum hail diameter : 3 cm <u>https://scontent-fra3-1.xx.fbodn.net/t31.0-8/13502515_1751218861792213_7114408828629163788_o.jpg</u> report status : report confirmed by reliable source (QC1) contact : Czech Thunderstorm Research Association z.s.	ESI

WD

Return Periods of Hailstone Sizes

Probability of certain hail sizes for whole of the Netherlands

1/10 years return period is >7cm

Return Periods of Hailstone Sizes

South has highest probability, North the lowest

Return periods of max. hail sizes (GEV) for NUTS regions

- Doppler radar in two locations (reflection)
- HiRLAM NWP model (for temperature in atmosphere)
- Mazimum Estimated Hailstone Size (MESH) derived using method of Witt et al. (1998)
- Period 2008-2019
- 1 km² grid

MESH example 23 June 2016

 Overall, 328 hail days selected Maximum expected hail size (MESH) in cm over the period 2008-2019 9,0 8.5 8.0 7.5 7.0 800 6.5 6.0 5.5 3.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.2 1.0 0.8 0.6 0.5 0.4 0.3 0.7 0.1 0.0

4.5

4.0

3.5

3.0 2.5

2.0

1.5

1.2

1.0

0.8

0.6

0.5

0.4

0.3

0.2

0.1

Annual Hail Risk

- > Using 50km radius due to limited length of time series
- Coastal regions clearly lower probability
- Probability increases towards the south-east
 - > Again in line with return periods

Impact on Solar Panels

Damage starting at 2-3 cm hailstone size

- > Visible damage dominating from 4cm
- Larger angle indicates somewhat less damage
- Orientation is very important
 - Orientation away from direction of the storm (SW) significantly reduces damage

id the Environmen

Angle of solar panel

•	•			•	
	Average damage / total SP (%)	Average mean hail size (cm)		Average damage / total SP (%)	Average mean hail size (cm)
Flat	18.1	4.2	S	17.0	4.1
	-0		SE	8.4	4.1
Pitched	12.6	4.0	SW	13.6	3.7
			W	15.7	4.4
eit Climate-KIC		a 🚺		Climate-KIC is supported by the EIT, a body of the European Union	

Orientation of solar panel

Concluding Remarks

- First hail climatology for the Netherlands created
- Return periods determined for various hailstone sizes
- Clear spatial pattern of hail occurrence
- Damage to solar panels linked to hail stone size, orientation and (to lesser degree) angle of solar panels

