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FORECAST-BASED FINANCING:
EARLY WARNING, EARLY ACTION

Disaster

Preparedness Early Action Response and Recovery

Can we FORECAST which people will € € €
be most impacted by natural hazards

& release humanitarian funding
based on forecast information? Use ex
ante cash transfers?




FLOWCHART OF THE PROJECT

T1: Food insecurity forecasting T2: Flexible survey and
model choice experiment
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REVIEW OF EXISTING CASH PROGRAMS: KENYA, ETHIOPIA'AND

« We carried out a feasibility study to assess the extent to which the contexts in
Kenya, Ethiopia and Uganda, and the capacities of KRCS, ERCS and URCS and other
relevant stakeholders, are favorable to the implementation of cash and voucher
assistance (CVA) to support to the most vulnerable people

* In the three countries covered by the F4S project, cash intervention is a feasible
measure that can be explored to meet the dietary needs of the affected
population, thus minimizing the levels of food insecurity.

« The current environment is conducive as the government continues to support
the CVA interventions.

— Early Action = Modelling + Local knowledge + Beneficiaries' preference + Cost-effectiveness




T1: FOOD INSECURITY FORECASTING MODEL | KENYA & UGANDA

T1: Food insecurity forecasting
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T1: ACCURACY OF FEWSNET IPC CLASSIFICATION - KENYA

A) The model accuracy per county
of Kenya B) Misforecasted crisis transitions per county of Kenya
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Source: Mathijs van Eeuwijk. “How accurate is food security early warning? Evaluation of Famine early warning systems accuracy in Kenya and Uganda”. In
preparation.



T1: ACCURACY OF FEWSNET IPC CLASSIFICATION - UGAND

A)
The model accuracy per Ugandan county
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T1: FOOD INSECURITY FORECASTING MODEL | ETHIOPIA

T1: Food insecurity forecasting

model

be Do
\../
B




T1: NOVEL APPROACHES - MODELLING FOOD INSECURIT

- Big, preferably open-source, data in combination with data-driven Machine
Learning could enable an improvement in the monitoring and prediction of
food security risks

« We built a model that can predict the transitions in food security (IPC) in
Ethiopia
« We test this approach on a case study of Ethiopia, focusing on livelihoods
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Source: Joris Westerveld et al. “Modelling Food Insecurity in Ethiopia: Towards a machine learning model that predicts the transitions in
food security using scalable features.” In preparation.



T1: MODELLING FOOD INSECURITY IN ETHIOPIA

Predict transitions
(+4) per
livelihoodzone
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Source: Joris Westerveld et al. “Modelling Food Insecurity in Ethiopia: Towards a machine learning model that predicts the transitions in
food security using scalable features.” In preparation.



T1: MODELLING FOOD INSECURITY IN ETHIOPIA - BUILDING RELEV.

PREDICTORS PREDICTAND

Biophysical

Rainfall, temperature, Normalized Difference
Vegetation Index (NDVI), Oceanic Nino Index
(ONI), soil moisture, ....

Socio-economic £ - A

Integrated Food Security Phase
Classfication IPC or indicators linked to
IPC

Staple food prices, poverty, infrastructure, societal
unrest, conflicts
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T1: RESULTS

Model identify improvement and deterioration in
food security more effective than the baselines
Model even identifies improvements better than
our benchmark

Model has more trouble in identifying transitions
in the south east of Ethiopia compared to other
regions

Model performs better for longer prediction
intervals

Source: Joris Westerveld et al. “Modelling Food Insecurity in Ethiopia: Towards a machine learning model that predicts the transitions in
food security using scalable features.” In preparation.
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T1: FEATURE IMPORTANCE
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Source: Joris Westerveld et al. “Modelling Food Insecurity in Ethiopia: Towards a machine learning model that predicts the transitions in

food security using scalable features.” In preparation.



T1: FOOD INSECURITY FORECASTING MODEL | KENYA
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T1: MODELLING DRIVERS OF FOOD INSECURITY | KEN

 First extract a number of monthly indicators to be used
as predictors in the Machine Learning Model, and annual
indicators of “shortages in the availability of maize
calories” to be used as predictands.

« Second, we apply the Random Forest algorithm to
predict high/low shortages in the availability of maize
calories events for each month within the growing
season of the maize.

« Third, we assess the accuracy metrics of each model,
and their ability to predict future events.

Source: Willemijn van Vuure. “." In preparation.



T1: MODELLING PERFORMANCE | KENYA

Out-of-bag error (training/validation)

Area under the curve (training/validation)
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T2: SURVEY AND CHOICE EXPERIMENT

T2: Flexible survey and
choice experiment




T2: CHOICE EXPERIMENTS

Effects of: Lead-time (2) + Expected impact .
on food security
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T3: COST-EFFECTIVENESS

| L
Npe”

/Do
Do




T3: PRELIMINARY: COST-EFFECTIVENESS - KENYA

How much reduction in costs a
cash  transfer programs can
potentially achieve by using a
forecasting model?

Based on outputs of the Random
Forest (Kenya) we compare two
scenarios in which cash transfer
payments are triggered by a
forecast model vs. a scenario
without forecasting

Reduction in costs (%) by using forecasting model
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