Towards an interoperability framework for observable property terminologies

I-ADOPT RDA WG

04 May 2020, 08:30-10:15 CEST
Metadata, Data Models, Semantics, and
Collaboration

Collaboration

I-ADOPT WG

Mar-2018

Task group formed under Vocabulary Semantic Services Interest Group (VSSIG)

Conceptualisation of measurement parameters - Michael Diepenbroek & Barbara Magagna

Apr-2019

BoF - Harmonizing FAIR descriptions of observational data

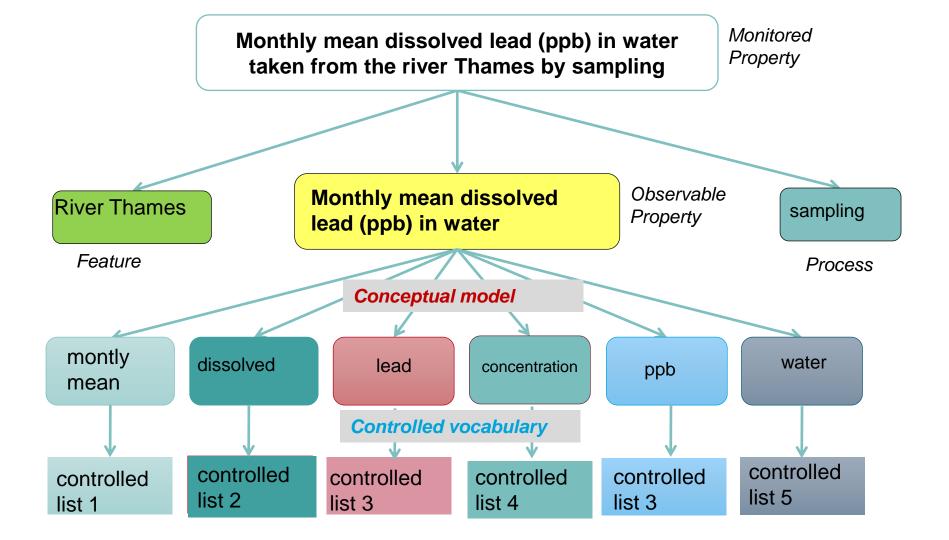
New Title of the planned WG: Interoperability of Observable Property Descriptions WG

Oct-2019

WG Kick-off meeting InteroperAble Descriptions of Observable Property Terminology

RDA 14th Plenary Helsinki, I-ADOPT WG introduction by Gwen Moncolffe

Mar-2020



First I-ADOPT Working Session RDA 15 Virtual Plenary

Chaired by Barbara Magagna, Gwenaelle Moncoiffe, Michael Diepenbroek, Maria Stoica

What do we mean by observable property?

- Property of the observed object, a natural phenomenon
- The description of what it is and what it represents
- Quantifiable or qualifiable
- Often derived from a representative subset of a feature of interest
 e.g. a physical or digital sample, an individual specimen, a population
- Observed directly or by proxy (modelling/calibration)
- In situ observations, laboratory experiments, remote sensing, modelling
- Also known as "observation type", "trait", "variable name", "parameter", "measurement"

Conceptual Models

- Observation and measurement
- OBOE
- Scientific Variable Ontology
- SERONTO
- Complex Property Model
- BODC PUV Semantic model
- Design Patterns for specific parts of the representation of Observable Properties
- Local strategies
- .

Controlled vocabularies

- SDN vocabularies
- ENVO
- EnvThes
- CHEBI
- OM
- WORMS
- ITIS
- WIGOS
- ..

Challenge: lack of interoperability

Diverse approaches in capturing data semantics:

- At the conceptual level, which model is used to describe the setting of the observation
- At the granularity level, how complex properties are represented
- At the term level, which controlled lists are used to describe what is observed

Motivation

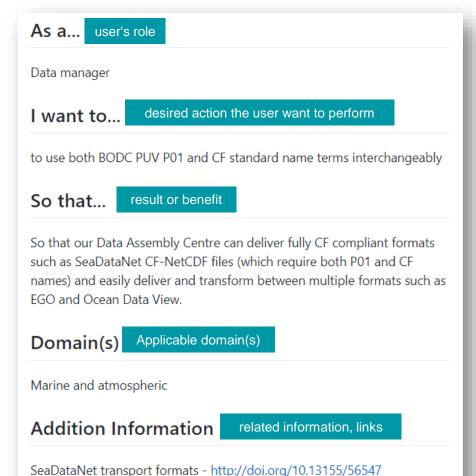
Addressing the "I" of FAIR Data Management

By building a conceptual framework to support interoperability between existing terminologies and address a broad range of known user requirements

By promoting the use of FAIR terminologies to annotate research data with well identified, unambiguous and machine readable vocabularies

I-ADOPT in a nutshell

I-ADOPT will produce an <u>Interoperability Framework</u> for representing observable properties in environmental research (but transferable to other domains)


Task 1: Collect user stories and formalise into use cases	Nov 19 - February 20
Task 2: Survey observation-centric terminologies	Jan 20 - February 20
Task 3: Derive use case requirements	March 20 - May 20
Task 4: Analyse semantic representation of OP against requirements	May 20 - October 20
Task 5: Develop Interoperability Framework	Nov 20 - Feb 21
Task 6: Test local mapping design patterns More details to be found in the case statement	March 21 - June 21

Task 1 - user stories and derived use cases

Anusuriya Devaraju
PANGAEA, MARUM - University Bremen, Germany

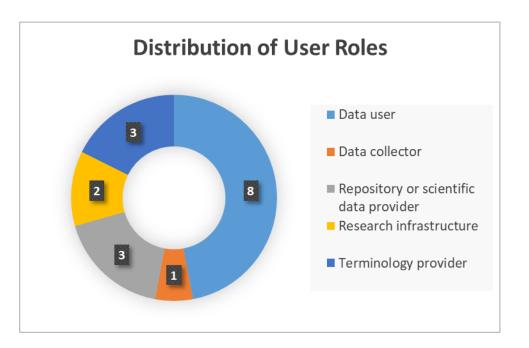
User Stories

- WG members contributed 19 user stories through Github @ https://github.com/i-adopt/users_stories
- Initial collection period: Nov 2019 –
 7th April 2020
- The user stories are not final (will be iteratively improved)
- We welcome new stories!

Step 1. Label important keywords

github_url	issue_title	contributors	as_a	i_want_to	so_that	domains	additional_info
https://github.co	Data manager -	louatbodc	Data manager	to use both BODC PUV	So that our Data	Marine and	SeaDataNet transport formats -
m/i-	interchange between			P01 and CF standard	Assembly Centre can	atmospheric	http://doi.org/10.13155/56547
adopt/users stor	BODC PUV P01 and CF			name terms	deliver fully CF		
ies/issues/17	standard names - deliver			interchangeably	compliant formats		
	SeaDataNet CF-NetCDF				such as SeaDataNet CF-		
					NetCDF files (which		
					require both P01 and		
					CF names) and easily		
					deliver and transform		
					between multiple		
					formats such as EGO		
					and Ocean Data View.		

Step 2. Summarize user stories and standardize :

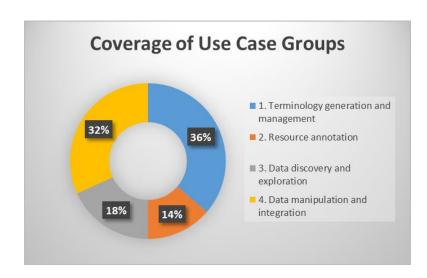

Subject Area(s) (DFG Classification of Subject Area)

User Role

github_url	SUMMARY	SUBJECT AREA	USER ROLE
https://github.com/i- adopt/users_stories/issue s/16	analyze data varied across multiple spatial scales to understand generalize trait-environment-relationships	All Domains	Data user
https://github.com/i- adopt/users stories/issue s/17	support translation of term names between two terminologies (BODC PUV PO1 and CF) to deliver data files compliant with the models.	Atmospheric Science, Oceanography and Climate Research	Research infrastructure

Natural	Sciences (119 Members)	
RB-Nr.	Review Board / Subject Area	Subject Areas
301	Molecular Chemistry	+
302	Chemical Solid State and Surface Research	+
303	Physical and Theoretical Chemistry	+
304	Analytical Chemistry, Method Development (Chemistry)	+
305	Biological Chemistry and Food Chemistry	+
306	Polymer Research	+
307	Condensed Matter Physics	+
308	Optics, Quantum Optics and Physics of Atoms, Molecules and Plasmas	÷
309	Particles, Nuclei and Fields	+
310	Statistical Physics, Soft Matter, Biological Physics, Nonlinear Dynamics	+
311	Astrophysics and Astronomy	+
312	Mathematics	+
313	Atmospheric Science, Oceanography and Climate Research	+
314	Geology and Palaeontology	+
315	Geophysics and Geodesy 315-01 Geophysics 315-02 Geodesy, Photogrammetry, Remote Sensing, Geoinformatics, Cartography	⊟
316	Geochemistry, Mineralogy and Crystallography	+
317	Geography	+
318	Water Research	0

User Roles
Data user
Data collector
Repository or scientific data provider
Research infrastructure
Terminology provider


Step 3. Derive use cases from user stories* and group the use cases

Use Case Groups	Group description	→ Use Case	Use case descriptions	User Stories
	This group contains use cases in which the requirements are to generate, curate, align and maintain	1.1 Semantic modelling	Develop formal terminologies to represent the concepts being described and the relationships between those concepts.	US3, US13, US14, US18
	observable property terminologies.	1.2 Terminology management	Gather, curate and maintain the individual terms within a terminology.	US1, US15
*Other re	levant	1.3 Semantic alignment	Create mappings between terminologies using established relationships; record and preserve the mappings.	US3, US6, US15, US17
use case also incl		1.4 Terminology search	Search for relevant terminologies and/or terms within terminologies; retrieve the search results.	US5, US6
		1.5 Multilingual concepts	Provide multilingual representations of the concepts within a terminology.	14

From User Story to Use Case

• There are 4 use case groups:

Use Case Groups	Group description	# of use cases
#1 - Terminology generation and management	This group contains use cases in which the requirements are to generate, curate, align and maintain observable property terminologies.	5
#2 - Resource annotation	This group contains use cases that require human and machine-readable identification of observed properties in datasets or parts thereof	3
#3 - Data discovery and exploration	This group contains use cases that require the user to search across multiple sources	2
#4 - Data manipulation and integration	This group contains use cases that require the combination of multiple datasets from various sources	5

(Note: One user story may belong to one or more use cases)

Overview use cases

UCG-ID	use case group	UC-ID	use case	description
		UC1	Semantic modelling	Develop formal terminologies to represent the concepts being described and the
	Terminology	UC2	Terminology management	Gather/curate and maintain the individual terms within a terminology.
G1	generation and	UC3	Semantic alignment	Create mappings between terminologies using established relationships. Record and
	management	UC4	Terminology search	Search for relevant terminologies and/or terms within terminologies. Retrieve the search
		UC5	Multilingual concepts	Provide multilingual representations of the concepts within a terminology.
	Docoures	UC6	Data annotation	Manual or automated process for annotation of column headers/fields and streams. Could
G2	Resource	UC7	Metadata annotation	Manual or automated process for annotation of metadata records related to datasets. This
	annotation	UC8	Annotation service provision	provision of annotation tools and services
	Data discovery	UC9	Keyword semantic data search	Data discovery based on keywords that come from a controlled vocabulary
G3	and exploration	UC10	Facet semantic data search	Data discovery based on semantic classifications.
	and exploration	UC11	Data mining and AI	Discovering patterns in large data sets
	G4 manipulation	UC12	Data integration	Combine datasets from various sources based on semantic information
CA		UC13	Data model alignment	Harmonize different data models
G4		UC14	Data validation	Use semantic information to check data
	and integration	UC15	Data product development	Generate output by integrating several datasets

User stories in github

- Data engineer create variable list harmonize vocabulary semantic modelling
 #18 opened 12 hours ago by smguru
- Data manager interchange between BODC PUV P01 and CF standard names deliver SeaDataNet CF-NetCDF data annotation data integration semantic alignment

#17 opened 22 days ago by louatbodc

- Scientist assess data to generalize trait-environment-relationships in phytoplankton communities data mining and Al keyword semantic data search #16 opened on 20 Jan by IlariaRosati
- Terminology provider access agreed mappings gain efficiency in data exchange semantic alignment terminology management

#15 opened on 11 Jan by gwemon

- Data Manager ObservableProperty with parameters create identifiers for property+parameters data annotation metadata annotation semantic modelling #14 opened on 8 Jan by EnocMartinez
- Scientist Create standardized descriptions of new particle formation events -Interoperable and reusable data data annotation data integration semantic modelling

#13 opened on 8 Jan by markusstocker

- data manager or scientist nitrogen in biomass and fertilization model /AnaEE02
 data integration | data product development | keyword semantic data search |
 #12 opened on 7 Jan by opichot
- scientist N forms in water N<->phytoplankton / AnaEE_01 data mining and AI facet semantic data search

#11 opened on 7 Jan by cpichot

- Bio-loggingData NormalizeDataMeasurements Interoperability data integration keyword semantic data search metadata annotation
 #10 opened on 6 Jan by sarahcd
- Scientist clean data (reproduce) elemental analysis of sample data integration data validation facet semantic data search

 #9 opened on 27 Dec 2019 by huberrob
- Scientist Integrate data Efficient analysis data integration data mining and Al facet semantic data search

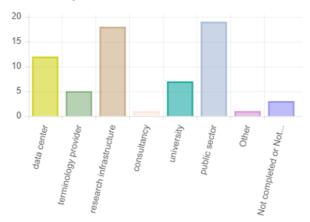
#7 opened on 5 Dec 2019 by vanderbi

Task 2: Annotation practices - observable property models and terminologies in use

Gwen Moncoiffé
British Oceanographic Data Centre
National Oceanography Centre
United Kingdom

Results of survey (ongoing!)

- 33 valid responses received between 23 January 01 March 2020
 - 21 were both consumers and providers of terminologies
 - 6 were consumers only
 - o 6 were providers only
- 25 terminologies >> <u>catalogue</u>

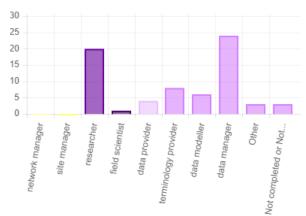

Work in progress!

→ Preliminary results

- Mainly english language
 - some bi-lingual French/English terminologies
 - some supporting multilingual translations

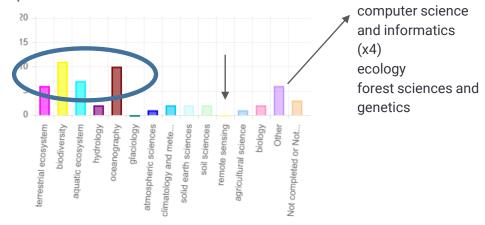
Responders' affiliations

9.6 What is your affiliation's role?



- → RIs and data centres
- → Geographic coverage mainly English speaking and European countries

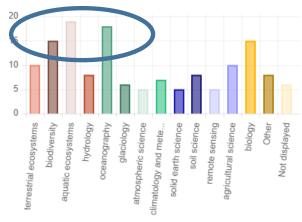
Countries	# submissions All
Australia	2
Austria	1
Canada	1
France	8
French polynesia	1
Germany	2
International	1
Ireland	1
Italy	6
Norway	1
South Africa	1
UK	3
USA	5


Profile of responders

9.2 Which of the following describes your job best?

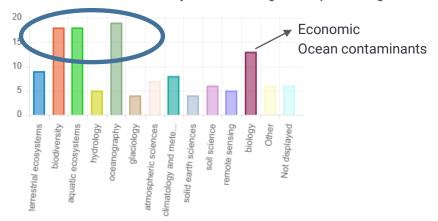
- researchers and data managers in about equal representation
- All except 1 agreed to being contacted/mentioned

9.3 If you are a researcher, in which research domain(s) do you operate?

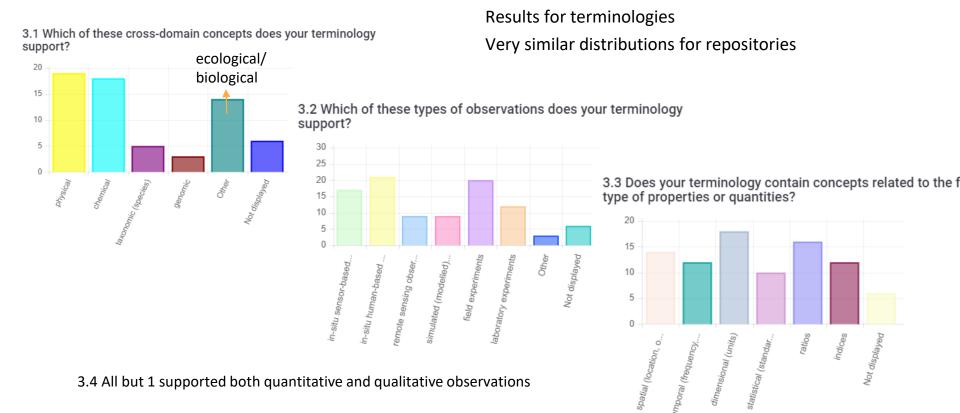


terrestrial and aquatic ecosystems, oceanography and biodiversity

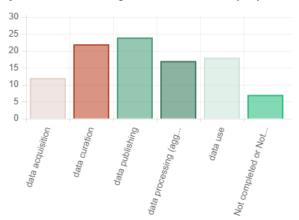
Domain coverage


Terminologies

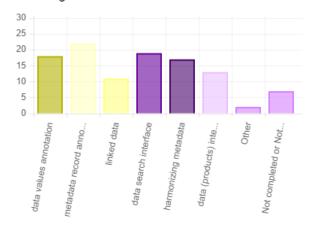
2.5 Which domain(s) is/are the terminology representing?


Consumers

4.3 Which domain is the data you are working with representing?

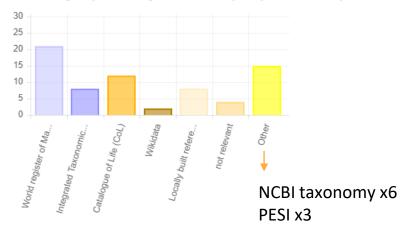

- → very similar distributions for providers and consumer
- strong representation from biology / biodiversity / aquatic ecosystems / oceanography
- → many terminologies are described as being multidisciplinary (or "generic")

Observations types supported by existing terminologies

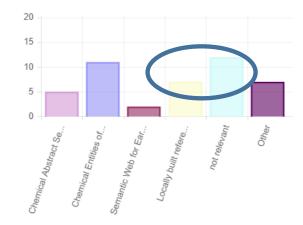


Relation to data life cycle and main purpose of the terminologies

Data Life Cycle phases (ENVRI) 5.1 At which phase of data life cycle do you use terminologies for observable properties?

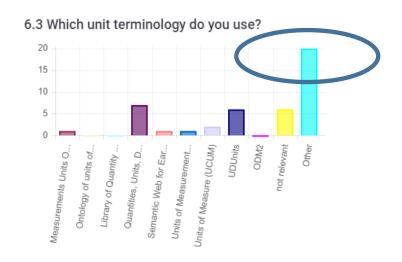


5.2 For which purpose do you use observable property terminologies?

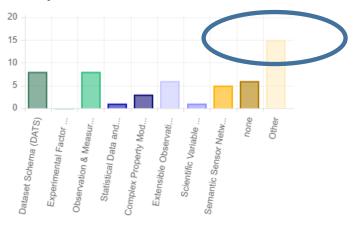


External reference for biological and chemical names

6.1 Which registry of biological taxonomy do you use, if any?



6.2 To what chemical database(s) do you refer for the chemical substance name?


- → WoRMS and ChEBI well used when applicable
- → Locally built reference list counts is high for chemical substances and moderate for biological names
- → Opportunity to look at use of common reference lists

Units and conceptual models

- → QUDT and UDUnits
- → Other: NVS P06 (x3), OBOE units (x7), partial QUDT (x2)

7.1 What semantic or conceptual model(s) if any do you use to describe your data?

- → DATS, O&M, OBOE, and none
- → Other: at least 10 mentioned

Work in progress!

Task 3: Requirements first ideas

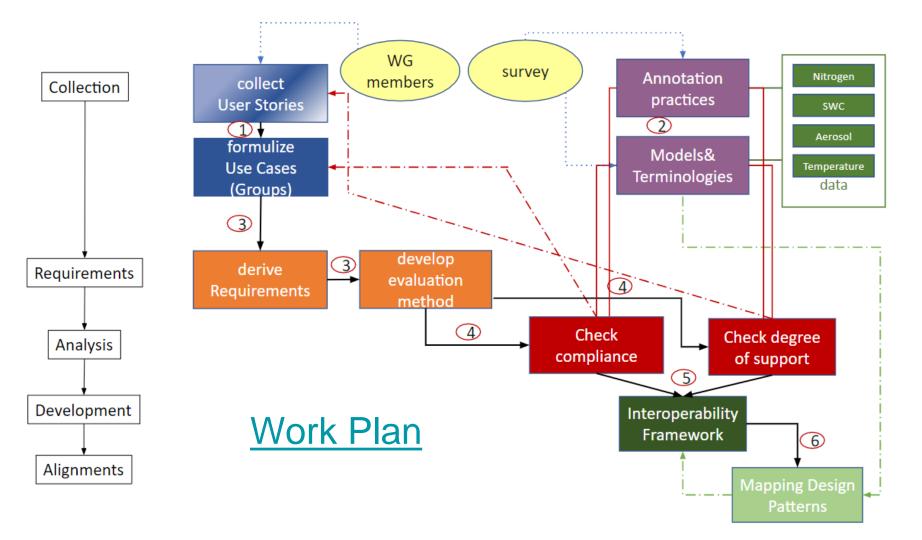
Barbara Magagna Environment Agency Austria

Requirements

What does a **terminology** need to **provide** to **support** a given **use case**?

("We can do this with that model.")

Goal:


- to test the suitability of existing models/ontologies and
- a set of requirements = requirement specification for the interoperability framework

Requirements

For each use case we aim to collect necessary and optional requirements

Necessary requirement: required features, if missing, the model fails to support the use case

Optional requirement: not necessary features that simplify the implementation of a use case or increase its usefulness

Road Map

Requirements analysis:

- 1. agree on use case definitions and involved actors
 - o ask user story contributors to check the allocation to use cases
- 2. define requirements for each use case (necessary/optional)
 - ask user story contributors to check requirements
- 3. develop evaluation method for the requirements analysis
- 4. analyse suitability for each pair of OP model and use case
- 5. analyse degree of support for each pair of OP model and user story

Validation:

- 1. ask user story contributors for data sets to support the requirement analysis
- 2. select first N-based user stories with datasets for the analysis
- 3. validate analysis results with actual datasets and use cases

Evaluation method for requirement analysis

- check methodologies in ontology engineering
 - competency questions
 - metrics
 - o ... etc.
- decide which methodology to apply
- develop/adopt methodology for I-ADOPT

Working Group modalities

- 2 telcos per month:
 - first Thursday at 18:00 CEST (US-friendly)
 - third Tuesday at 10:00 CEST (Australia-friendly)
- Material to be found in <u>Google Drive</u>
- Ongoing work to be followed in <u>GitHub</u>

Want to participate and contribute?

- subscribe to I-ADOPT
- check the <u>I-ADOPT WIKI</u>
- visit us in <u>Twitter</u>
- contribute a user story in <u>GitHub</u>
- participate at the <u>I-ADOPT survey</u> about terminologies and annotation practices of observable properties

Thank you very much!