

| Length $\quad 205.0 \mathrm{~m}$ |
| :---: | :---: |
| GRDP comparison between With DAM \& Without DAM |

- Total Flooding area
: 15ha (With DAM), 4,500ha (Without DAM)
\gg Flood Damage is approximately 90 billion won

- CINCLUSIDN

- Results summary
population are expected to increase consistently

- Water supply rate(30yr avg.) 0.95 (S1), 0.91 (S2) \rightarrow S2 reduced by approximately 4% due to extreme droughts.

- GRDP in 2045

12 trillion won(S1), 11 trillio won(S2)
\rightarrow Resulting in a difference of approximately 1 trillion won
Mancer

——3 Scenario 3-Urbanization/Industrialization

- Assumptions

1) Higher-than-expected birth 2) Increase in water consumption 3) Increase in production per unit of industrial land

- Increased GRDP \rightarrow Population influx \rightarrow Soar demand for living and industrial water
- Total water use in 2045 78 million m^{3} (S1), 95 million m^{3} (S : Water supply rate
- Sce. 1 - By constructing the dam, the downstream society receives positive impact of population, GRDP, flood prevention, water supply - Sce. 2 - The massive damage caused by extreme climate change will not occur in the area with proper dam operation. GRDP and
- Sce. 3 - The water consumption continuously increases due to urbanization and economic revitalization. The average water supply rate of Sce. 3 is expected to be approximately 0.81 , which is significantly lower than that of Sce. 1
- The developed socio-hydrology model can be used as a decision-making tool to policymakers who are planning the construction of new multi-purpose dams. It can also be applied to the effectiveness analysis and planning of other water resource facilities.

