Rapidly accelerating subsidence in Maceió (Brazil) detected by multi-temporal DInSAR analysis

Magdalena Vassileva12

Djamil Al-Halbouni¹, Mahdi Motagh^{1,2}, Torsten Dahm¹, Thomas Walter¹, Hans-Ulrich Wetzel¹

¹German Research Centre for Geosciences, Potsdam Germany

²Leibniz University Hannover, Institute of Photogrammetry and GeoInformation, Hannover, Germany

Overview

Motivations of the study:

- Maceió municipality is suffering **severe geological instability** related to mining activities near the cost of the Mundaú Lagoon;
- Fractures on both buildings and roads have intensified mainly in Pinheiro neighborhood since the beginning of 2018, especially after strong rainfall event on 15th of February 2018 and a seismic shock of local magnitude 2,4mR on 3rd of March 2018;
- Geodetic ground measurement are not available;
- Historic and updated geodetic InSAR measurements have not been provided yet.

Our goals:

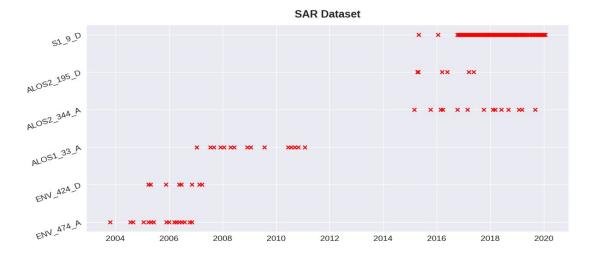
- Detect the **onset** of the instability;
- Track the **temporal and spatial evolution** of the instability;
- Estimate the **cumulative subsidence** rate;
- Estimate possible horizontal deformations;
- Have an overview understanding of the evolution of the **source of the subsidence**.

Methods:

- **Multi-temporal DInSAR analysis** (SBAS technique) using multi-sensor SAR data from 10.2003 up to 03.2020;
- **Geophysical modelling** (Mogi and Okada) to model the evolution of the source;
- **2D geomechanical modelling** to simulate 2 real salt-cavities, their stages of instability and the possible future development evolution of the surface displacement.

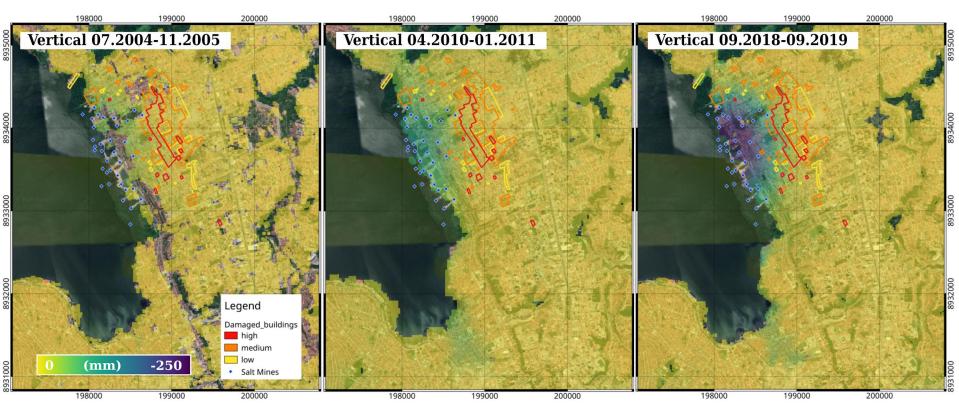
Area Of Interest

100


Dataset

102

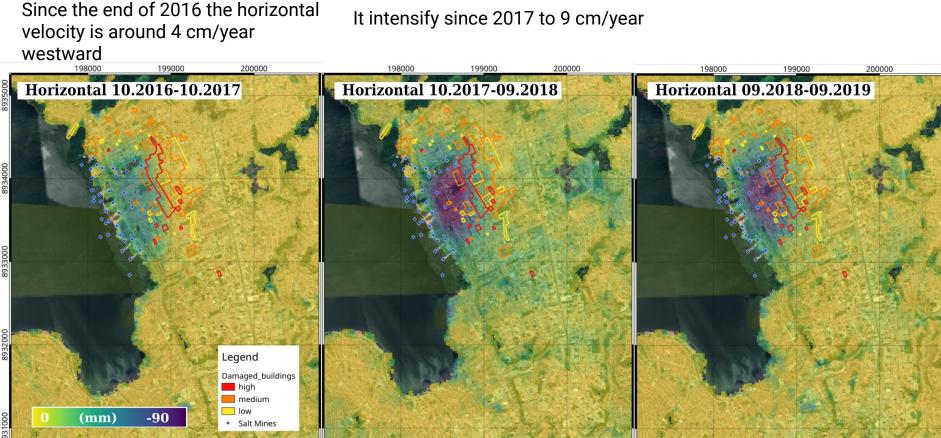
GFZ
Helmholtz-Zentrum


mission	orbit path	band	alos (°)	ILOS (°)	N.° of images	period
ASAR ENVISAT	ASC	C (5.331 GHz)	24.4	76.8	15	25/07/2004 - 12/11/2006
ASAR ENVISAT	DESC	C (5.331 GHz)	23.8	-77.7	8	23/03/2005 - 28/03/2007
ALOS-1 POLSAR	ASC	L (1.2 GHz)	37.1	78.8	16	17/01/2007 - 28/01/2011
ALOS-2 POLSAR	DESC	L (1.2 GHz)	35	-78.2	6	13/04/2015 - 22/05/2017
ALOS-2 POLSAR	ASC	L (1.2 GHz)	35.4	77.3	13	10/10/2015 - 07/09/2019
SENTINEL-1A	DESC	C (5.331 GHz)	35	77.9	107	07/10/2016 - 08/03/2020

Dataset [07.2004 - 03.2020] Data gap [01.2011- 02.2015] Already in 2004-2005 a 4 cm/year

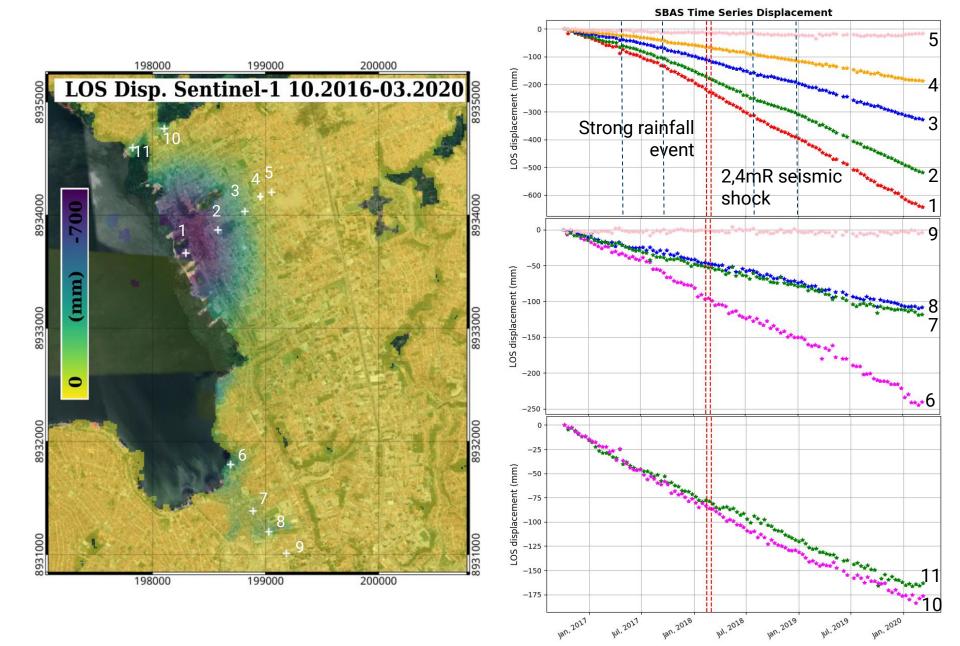
of subsidence appears

It reach its maximum value of velocity of 24 cm/year in 2018.


The subsidence intensify during

the years.

© 2020 Google Image © 2020 Maxar Technologies



© 2020 Google Image © 2020 Maxar Technologies

LOS Time-Series

Geophysical Modeling

We have many active cavities which contribute to the subsidence, however in this study we assumed a unique source model. Salt mines are located in a depth between 700 and 1000 m and are all close to the Mundaú Lagoon.

197500

	point p	ressure sou	rce		
interval	vol (m3)	Depth (m)	East (m)	North (m)	
03.2015- 03.2016	-3.87E+05	774	198124	8933762	
03.2016- 03.2017	-3.64E+05	730	198198	8933687	
10.2016- 10.2017	-5.25E+05	777	198108	8933746	
10.2017- 09.2018	-5.80E+05	697	198127	8933793	
09.2018- 09.2019	-5.35E+05	653	198179	8933841	

Okada model:

• We fixed the location with that from Mogi model;

rectangular source-opening 600x150m

- We considered horizontal plane (dip=0°);
- We fixed the plane size to 600x150m.

interval	Openin g (m)	vol (m3)	Strike (°)	depth (m)		
03.2015-03.2016	-3.4	-3.0E+05	176	953	8933000	
03.2016-03.2017	-3.0	-2.7E+05	171	873	893	
10.2016-10.2017	-4.6	-4.2E+05	155	962		
10.2017-09.2018	-5.2	-4.6E+05	165	857		
09.2018-09.2019	-4.9	-4.4E+05	164	807		

2020 Google Image © 2020 Maxar Technologies Legend Point pressure 03.2015-03.2016 Point pressure 03.2016-03.2017 Point pressure 10.2016-10.2017 Point pressure 10.2017-09.2018 Point pressure 09.2018-09.2019 Rect. Model 03.2015-03.2016 Rect. Model 03.2016-03.2017 Rect. Model 10.2016-10.2017 Rect. Model 10.2017-09.2018 Rect. Model 09.2018-092019 Salt Mines 198000 198500 197500

198000

GFZ

Helmholtz-Zentrum

Leibniz Universität Hannover

198500

2D Geomechanical Modeling

2D distinct element method (DEM) was used to simulate the evolution of two real size cavity models. Four different geomechanical stages were simulated:

GFZ

Helmholtz-Zentrum

Leibniz Universität

Hannover

- 1) initially stable pressurized cavity, with injection pressure of 1.5 MPa;
- 2) over fracturing and subsidence;
- Stage 1 Stable Stage 2 - Fracturing Stage 3 - Collapse Stage 4 - Surface deforma 3) total collapse 4) final translation of the 260 260 260 260 deformation to the surface. depth [m] 250 280 depth [m] 250 280 depth [m] 250 280 depth [m] 250 280 1040 1040 1040 1040 1300 1300 1300_400 1300 -200 x [m] ` 200 400 -200 0 X [m] 200 400 -200 0 X [m] 200 400 -200 0 X [m] 200 400 Cavity central point initiation Salt layer Roof laver Fracture Arc pressure P = 1.5 MPa breakage breakage Propagation T Model stages InSAR Profile P1 InSAR S max Stage 1 2004 Ω 2006 2008 Stage 2 2010 Stage 3 2012 *U_y* [m] 2014 -1 2016 Stage 4 until 11/2018 until 12/2019 2018 -2 Future development? Fracture development -3 Sinkholes & Compression ridges at the surface bounding subsidence zone -800-400-200200 600 - 600 0 400 800 X [m]

Conclusions

Leibniz Universität Helmholtz-Zentrum Hannover

GFZ

Regarding the subsidence phenomena:

- Already in 2004/2005 subsidence started to appear;
- It has intensified up to 23/24 cm/year since 2018; •
- A cumulative max. subsidence of 1.8 m was estimated from March 2015 to March 2020;
- A east-west horizontal motion is estimated up to 8/9 cm since 2018;
- Geophysical models show horizontally stable source, upward fracture propagation since **2016/17** and a clear volume change increment since 2016/17;
- Geomechanical models shows good agreement of the simulated subsidence with the DInSAR measurements and they also show upward fracture propagation;
- Based on the geomechanical modelling, in case of a total collapse of the two cavities, an • approximate further 1m of subsidence is expected to occur, though no sinkholes.

General conclusions:

- InSAR is a **powerful tool to detect and monitor in time geological instabilities** especially in urban areas due to the higher coherence;
- The availability of archives of historical SAR data allows to obtain backdated geodetic • **measurements** and to contribute to understand the onset of geological instabilities;
- The very high temporal resolution and not commercial **Sentinel-1** data provides **very good** temporal displacement trend detection;
- The availability of both ascending and descending acquisitions allows also horizontal • **component** estimation, which cannot be neglected in urban areas;
- Geomechanical and geophysical modelling (this last based on DInSAR data) provide good overview understanding of the source time and space evolution.