The geoelectric structure of the Romanian underground and its contribution to the geoelectric hazard during the solar cycle 23

V. Dobrica, D. Stanica, C. Demetrescu, C. Stefan Institute of Geodynamics, Romanian Academy, Bucharest, Romania venera@geodin.ro

Acknowledgements: This work was supported by a grant of the Romanian Ministery of Research and Innovation, CCDI-UEFISCDI, project number PN-III-P1-1.2-PCCDI-2017-0266/SAFESPACE, within PNCDI III

Space weather hazard (GICs)

Induction in the Earth

The surface geoelectric field Plane wave model (Viljanen&Pirjola, 1989)

- the underground electric conductivity
- the time derivative of the recorded geomagnetic field

Background on Earth conductivity - regional and local scale

Figure 2: Conductance map of Europe, upper 80 km

MT model of Adam et al. (2002)

Geological map of Romania with the MT geotransects (blue lines) and s q u a r e c ells, numbered from 1 to 7, corresponding to t h e 1 - D M T lithospheric models

Tectonic unit

East European Platform + Scythian Platform + Carpathian Foredeep + North-Dobrogean

Orogen – 1

Transylvanian Depression - 2

Pannonian Depression - 3

Moesian Platform - 4

East Carpathians - 5

South Carpathians - 6

Apuseni Mountains - 7

Geoelectric structure of the Romanian underground

Geomagnetic storms

Intense (Dst < -150 nT) storms – solar cycle 23

Geomagetic data – European geomagnetic observatories network

- 1-minute data for geomagnetic field components (www.intermagnet.org)

> - the disturbance in X is 2-3 times larger at northern latitudes than at mid&southern latitudes;

November 2003

Surface geoelectric field (E)

November 2003 storm ~105°E

- 1-2 mV/km in case of UPS (60°N);

Surface geoelectric field – Emax (Geoelectric hazard maps)

November 2003, Dst = -422 nT

Field direction and magnitude – arrows centered on the geomagnetic observatory location E max value is not reached at the same moment at all observatories and its orientation depends on that moment of the storm development. Field direction and magnitude – arrows centered on the geomagnetic observatory location

Dobrica et al. (RRG, 2016)

Geoelectric hazard (Emax maps) - solar cycle 23 -

Dobrica et al. (Sun and Geosphere, 2016)

13.5

12.5

11.5

10.5

9.5

8.5

7.5

6.5

5.5

4.5

3.5

2.5

1.5

0.5

-0.5

Concluding remarks

- the disturbance in X is 2-3 times larger at northern latitudes than at mid&southern latitudes;
- the more pronounced geoelectric component is directed East-West;
- the amplitude of the geoelectric field produced by magnetic variations is of the order of hundreths of mV/km in case of SUA (45°N), and of 1-2 mV/km in case of UPS (60°N);
- the maximum E value is not reached at the same moment at all observatories and its orientation depends on that moment of the storm development;
- the geoelectric hazard (GICs) is significant above the 50°N (S) geomagnetic latitude;
- the future work: assessing Emax Romania for all intense storms of solar cycle 23; estimating effects of historical storms.