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Motivation

In the past decades, the co-occurance of storm surges, wind waves, heavy
precipitation and resulting runoff led to critical high water levels at the
coasts of southern Africa and as a consequence to property damage and
loss of human life. As these compound events at southern African coasts
are dominated by wind waves, it is of great importance to investigate the
regional wave climate with focus on wave forcing and the origin of wave
energy. The understanding of the processes enables us to improve our
future wave climate projections and, in a next step, drives flood risk

assessment forward.

Model Chain

The aim of this study is the application of a hybrid approach to estimate
future wave climate and to downscale the waves to the coast.

First, we use mean sea level pressure data as input for an artificial neural
network (ANN) to predict offshore wave data (blue point in fig. 1).

Second, we apply the numerical wave propagation model SWAN to
transform the offshore waves nearshore (green point in fig. 1). Due to
computational limitations we only transform a selection of waves to the
coast and then use radial bias functions for reconstructions of complete
nearshore time series.

The focus of this poster is the prediction of offshore waves by the ANN.
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Figure 1: Nested model domains of numerical wave
propagation model SWAN with offshore boundary condition
(blue) and target point (green).
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Figure 2: Example of mean sea level pressure (blue to red) with
geostrophic wind velocities (black arrows), 3 days before and at the time
(17.05.2009 0:00) of an extreme wave event (Hs=8.23m).

Conclusion and Outlook

As shown the ANN is a suitable method to predict future
wave hydrographes from mean sea level pressure data. The
comparison with the hindcast already shows a high
correlation although the training period of 9 years is still
small which could be one reason for the elevated RMSE.

In a next step, we will apply a larger training period to the
ANN and refine the time delay and the area of wave
generation to further improve the predictions. Afterwards
we will be able to use robust projections of the mean sea
level pressure to estimate future wave hydrographs which in
turn will be the input for improved flood risk assessments.

Artificial neural network (ANN)

e time delay neural network (see fig. 3)

10 hidden layers

1 to 21 steps of time delay (6 hours per step)

Sigmoid transfer fuction inside the hidden layers, linear
transfer function inside the output layer

scaled conjugate gradient backpropagation algorithm
70% of time steps for training, 15% for validation

15% for testing
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Figure 3: Schematic layout of time delay neural network. x(t)
input data, y(t) output data, 1:21 time delay, w weight, b bias.

First training results of the ANN

The ANN is established by the input data mentioned above.
Afterwards 6 hourly significant wave heights of 2010 are
predicted and compared with the CAWCR hindcast as shown in
fig. 4. There is a good agreement for small and large wave
heights. The correlation is R2=0.79 with a RMSE of 0.60m.
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Figure 4: Comparison of significant wave heights from ANN
prediction and CAWCR hindcast at 34.4°S 17.6°E (blue squares
in fig. 2) in 2010.
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