

Validating future gravity missions via optical clock networks: Scientific Requirements

Stefan Schröder¹, Jürgen Kusche¹, Simon Stellmer², Anne Springer¹

Institute of Geodesy and Geoinformation, University of Bonn
 Institute of Physics, University of Bonn

Abstr.: D1737 | EGU2020-1998 Session G4.2: Modern Concepts for Gravimetric Earth Observation

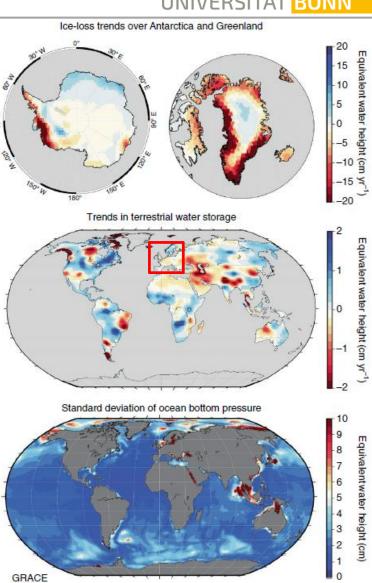
Thursday, 7 May 2020, 16:15-18:00

© Authors. All rights reserved.

Physikalisches Institut

UNIVERSITÄT BONN

gg

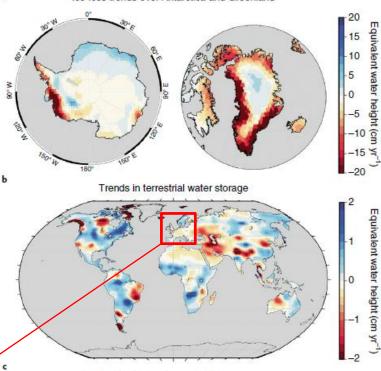

Stefan Schröder et al.

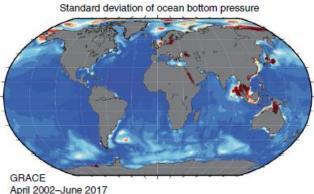
Tapley et al. (2019)

April 2002–June 2017

1 - Motivation

- Since 2002 GRACE observes the Earth's gravity field variations with unprecedented accuracy
- Mission start of its successor GRACE Follow-On: 2018
- Further missions are suggested (e.g. Pail et al., 2015)
- However, it is difficult to validate GRACE results

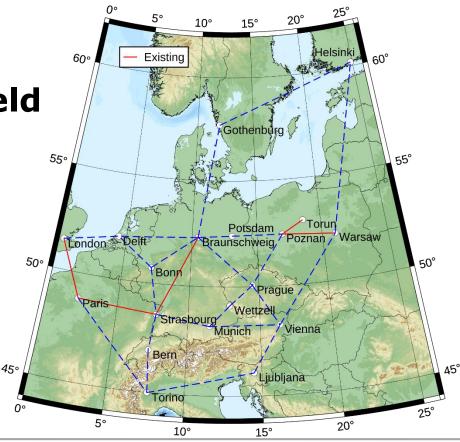




WHY is validation of GRACE important?

UNIVERSITÄT BONN

- required to identify/ understand possible problems in sensor system and data analysis
- required to better understand/quantify/calibrate GRACE error estimates
- helps to understand resolution limits of GRACE
- Especially important over Europe, where the signal is comparably small



Tapley et al. (2019)

quivalent water height (cm

CLONETS

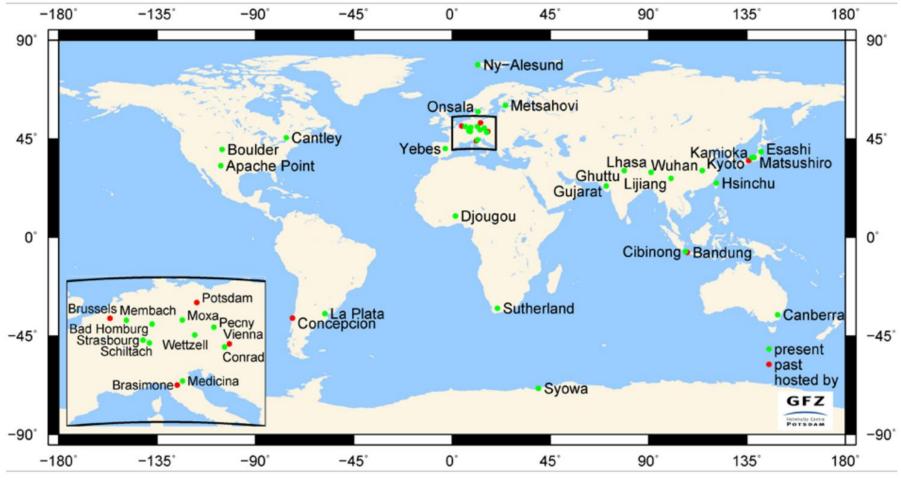
- The CLOck NETwork Services (CLONETS) project aims at developing an optical atomic clock network over Europe connected by fibre links
- How would it benefit
 time-variable gravity field
 determination?
- Which accuracies does it require to detect mass load variations?

UNIVERSITÄT BONN

- GRACE has been validated with GNSS measurements
- Main problems:
 - GNSS Comparison to GRACE requires an elastic loading model of the Earth
 - short wavelength signals like local groundwater discharge and recharge affects the GNSS but does not follow elastic loading theory, i.e. can not be detected with GRACE
 - Technique specific errors (e.g. Ray, 2006)

Validating GRACE with SG's

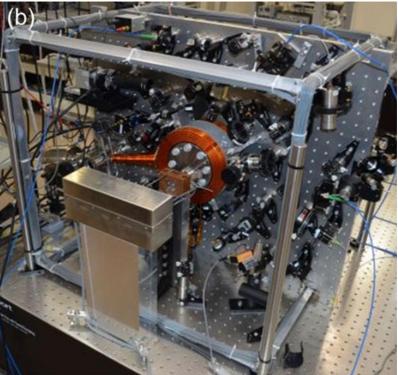
- If and how Superconducting Gravimeters (SG) can be used to validate GRACE, is disputed (see e.g. the discussion between Van Camp et al., 2014)
- Main problem:
 - Local hydrology and wet air mass affect the gravimeters, but not GRACE; they are hard to model


UNIVERSITAT

iGRAV043. Photo: Basem Elsaka, Uni Bonn

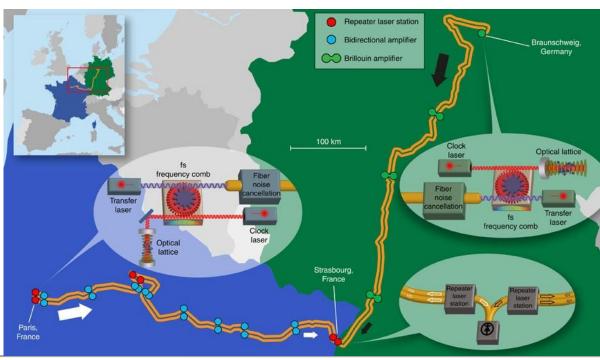
UNIVERSITÄT BONN

Another problem: heterogenous distribution of SG's


Voigt et al. (2016)

Stefan Schröder et al.

- Here, we suggest that optical atomic clocks will soon be a third ground measurement tool for GRACE validation, which is much less affected by local phenomena than GNSS and SG's
- In order to test this hypothesis, in this presentation we will
 simulate atmospheric and hydrologic effects on gravity potential



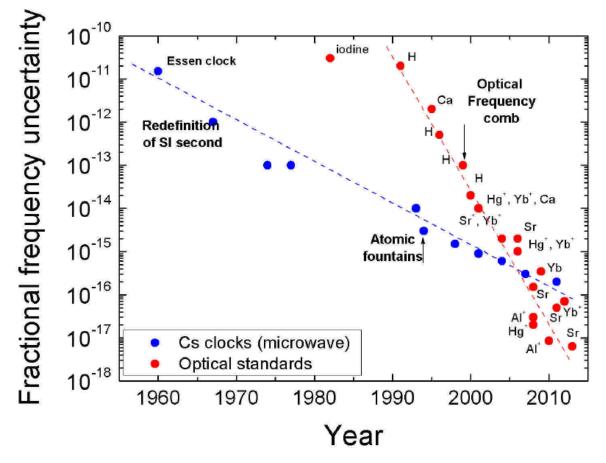
An optical atomic clock (Takamoto et al., 2015)

- Lisdat et al. (2016) observed gravitational redshift between Paris and Braunschweig due to height (and thus potential) difference
- We would like to take this one step further and investigate this Repeater laser station **Bidirectional amplifier** relativistic effect Brillouin amplifier due to time-variable 100 km Clock lase potential fe frequency comb noise changes Transf

Lisdat et al. (2016)

	GRACE	Optical atomic clock network
Temporal resolution	1 month (daily/weekly solutions disregarded)	?
Spatial resolution	 > 330 x 330 km ≙ I_{max} = 120 This is rather an optimistic view considering that filters are used afterwards 	?
Uncertainty	mm geoid height, averaged over 330 x 330 km	?

2 - Methods



$$\frac{\delta f}{f} = \frac{\delta U}{c^2} = \frac{\delta N - \delta h}{c^2} \frac{GM}{R^2}$$

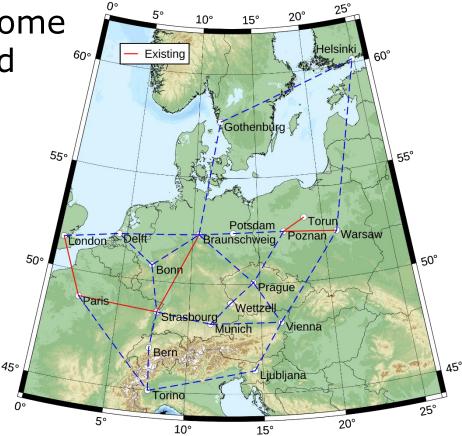
- U ... gravity potential N ... geoid height h ... vertical land motion $\frac{\delta f}{f}$... relative frequency difference
- That means: 1cm change in geoid height equals δf of ~1e-18
- But: Vertical land motion acts similarly on potential

Optical atomic clock uncertainty

Poli et al. (2014) show the rapid development of optical atomic clock uncertainty

UNIVERSITÄT BONN

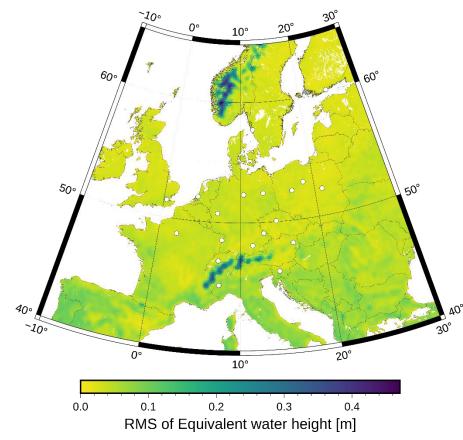
- So, how good are the clocks now?
- Differentiate between a clock's accuracy and stability
- Accuracy: Common in geodesy; limited by systematic effects/drifts
- Stability: same as precision/repeatability; sometimes referred to as instability (because this term is proportional to the number)

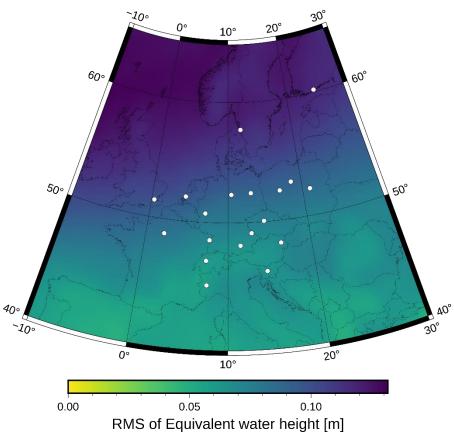


- Case of Bothwell et al. (2019):
 Accuracy of 2.0e-18; this value is reached by the stability (4.8e-17/√τ, τ are seconds) after <10 minutes of averaging
- Depending on how fast the accuracy value is reached by averaging, we could obtain several values of potential difference per hour
- Here, we will simulate errors at 1e-18 (little bit better than state-of-the-art), 1e-19, and 1e-20
- > We will simulate only **one data point per day** here

3 - Results

- UNIVERSITÄT BONN
- Optical fibre links are already established between some European National Metrology institutes (NMI) and other (possible) optical clock locations
- We show simulations for some of the existing and planned clocks and links

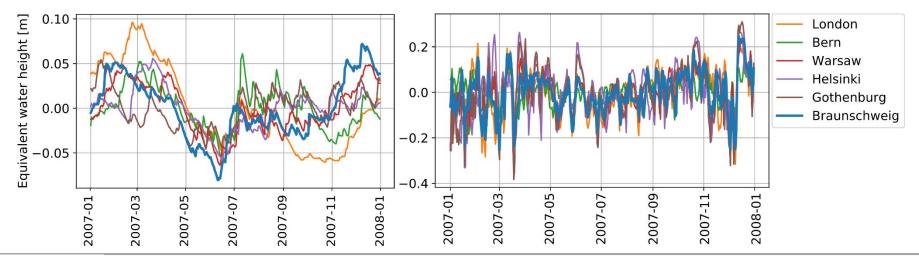

Location	Institution	Abbr.	Country
Vienna	Federal Office of Metrology and Surveying	BEV	Austria
Prague	Association of legal entities	CESNET	Czech Republic
Helsinki	National Metrology Institute of Finland	MIKES	Finland
Paris	Time Space Reference Systems, Paris Observatory	SYRTE	France
Strasbourg	University	US	France
Braunschweig	Physikalisch-Technische Bundesanstalt	РТВ	Germany
Bonn	University	UB	Germany
Munich	Technical University	TUM	Germany
Potsdam	GeoForschungsZentrum	GFZ	Germany
Wettzell	Geodetic Observatory	GOW	Germany
Torino	Italian National Metrology Institute	INRiM	Italy
Delft	Dutch Metrology Institute	VSL	Netherlands
Poznan	Supercomputing and Networking Center	PSNC	Poland
Torun	University	UT	Poland
Warsaw	Central Office of Measures	GUM	Poland
Ljubljana	Slovenian Institute of Quality and Metrology	SIQ	Slowenia
Gothenburg	National Laboratory for Length and Dimensional Metrology,	RISE	Sweden
	Research Institutes of Sweden		
Bern	Federal Institute of Metrology	METAS	Switzerland
London	National Physical Laboratory	NPL	United Kingdon



Stefan Schröder et al.

UNIVERSITÄT BONN

Community Land Model (CLM) Total water storage variability in 2007, expanded to spherical harmonics (I_{max} =720), RMS computed from daily values


Atmospheric mass variability computed after Forootan et al. (2013), from ERA-5 data, expanded to spherical harmonics (I_{max} =180); we consider the elastic loading of the Earth's crust via the LLN approach; RMS computed from daily values; dry+wet air

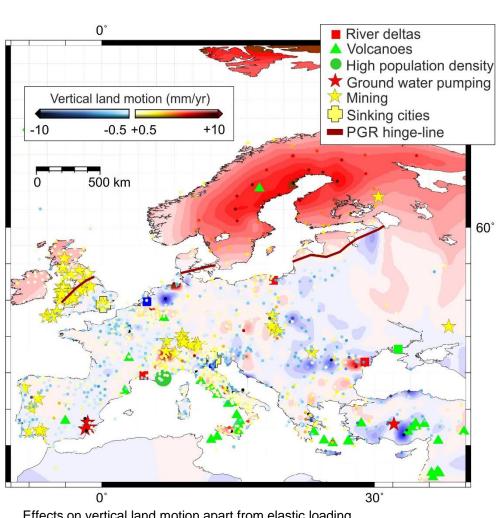
Time series of considered mass variations

U^{General} Assembly 2020

- UNIVERSITÄT BONN
- Let's take a look at some time series at certain clock locations
- Atmospheric part is much more variable at shorter time scales and has higher overall magnitude
- So what does this mean for fractional frequency measurements?

- **Hydrologic** EWH change + resulting elevation, geoid, and $\frac{\delta f}{f}$ $\frac{\delta f}{f} = \frac{\delta U}{c^2} = \frac{\delta N - \delta h}{c^2} \frac{GM}{R^2}$
- Clear annual signal; geoid change and elevation go in opposite directions, but their effect on potential goes in the 0.10 London Bern same direction 0.05 Warsaw
- Equivalent water height [m] Elevation [mm] 0.00 Braunschweig To infer geoid -0.05 change from $\frac{\delta f}{f}$, 1e-19 Fractional frequency [-] Seoid height [mm] 2 we have to 0 correct for land -5 elevation change 007-03 007-05 2008-01 2007-03 2007-05 2007-09 2008-01 007-11 2007-07 007-07 50-200 2007-01

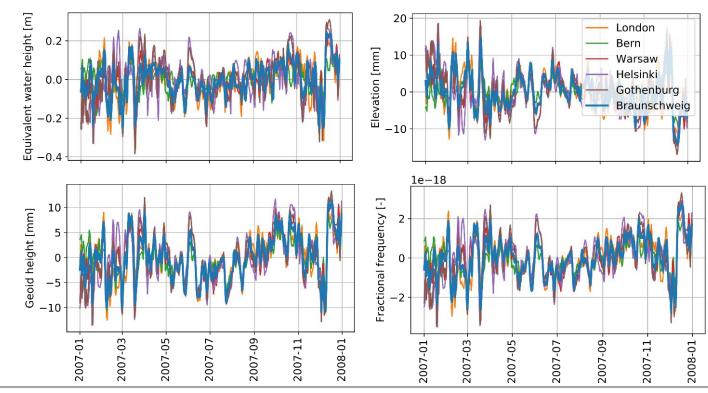
lelsinki Gothenburg


UNIVERSITAT

60°

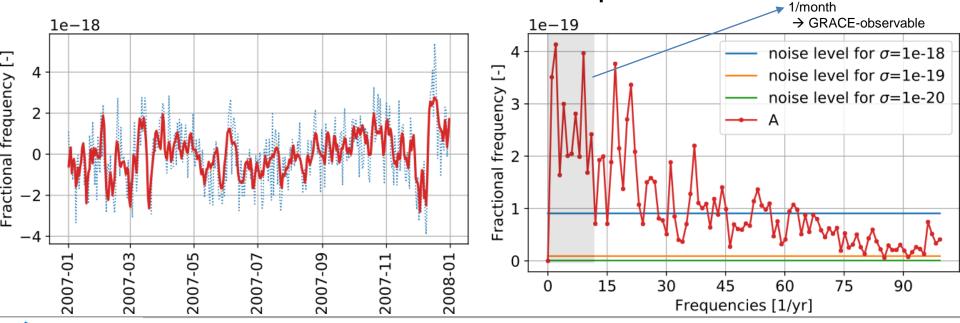
GNSS required

- Effects like local groundwater changes do not follow elastic loading theory:
- Vertical land motion that is not associated with much geoid change
- GNSS as correction for the resulting potential change is inevitable


Effects on vertical land motion apart from elastic loading. Source: Anna Klos, NEROGRAV project presentation (2019).

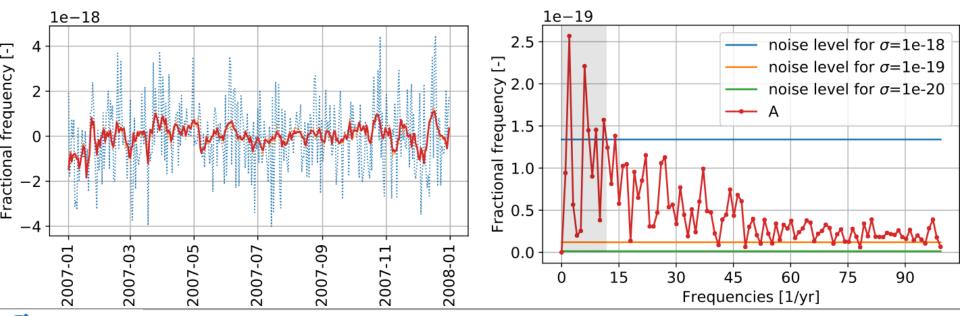
Atmosphere for comparison

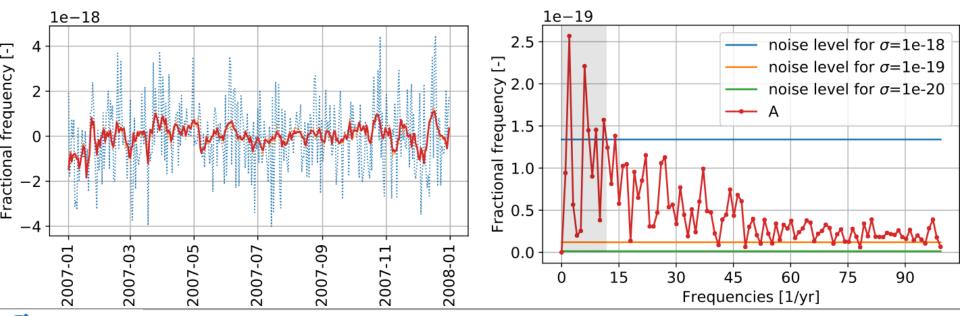
- 3-4 times higher effect on $\frac{\delta f}{f}$
- Let's take one time series and make some assumptions for errors



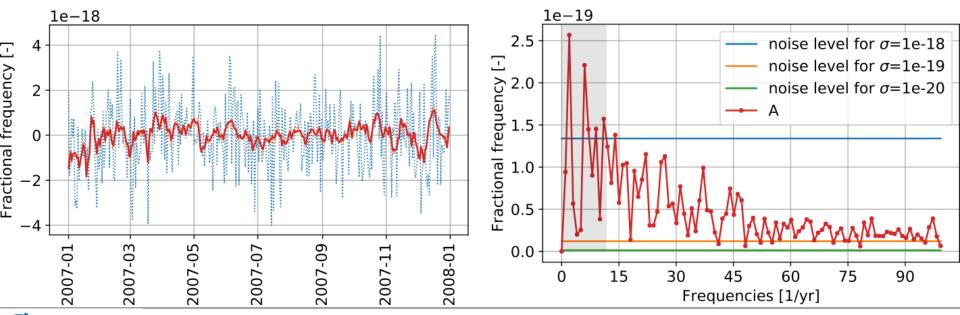
UNIVERSITÄT BONN

PTB Braunschweig

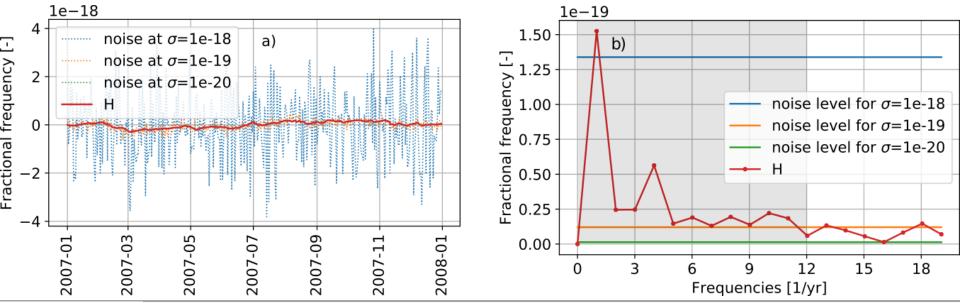

- Braunschweig (Physikalisch-Technische Bundesanstalt) – time series and amplitude spectrum
- Modelled white noise with $\sigma = 1e 18$ (19, 20)
- Signal larger than noise
- But: We are only observing a single clock ... How does it look for a clock comparison?



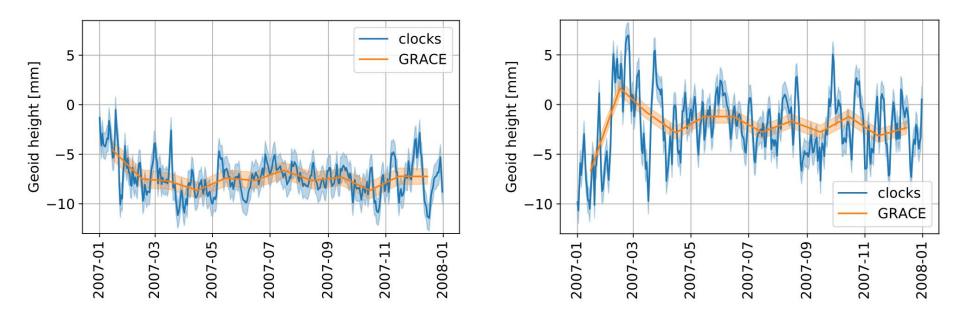
- White **noise is now larger** ($\sigma = \sqrt{2}e 18$ (19, 20))
- Signal is smaller because large scale/low degree signals vanish
- Only a few frequencies of the amplitude spectrum visible for clock uncertainty of 1e-18 $\frac{\delta f}{f}$



- An optical clock network at NMI locations with clock uncertainty of 1e-18 is not able to detect time-variable gravity over Europe
- Let's go down one magnitude



- The $\sqrt{2}e$ -19 noise in orange can hardly be seen on the time series
- It's also way below almost all frequencies in the amplitude spectrum
- Clocks with uncertainty of 1e-19 could very well detect atmospheric changes over Europe



- For **hydrology** the noise of 1e-19 becomes critical as the variations in $\frac{\delta f}{f}$ are at ± 2e-19
- Clocks with an uncertainty of 1e-19 would be just about able to detect **hydrologic changes over Europe;** which is small compared to other continents

Comparison of optical atomic clock network and GRACE

- Compare that to GRACE: simulate GRACE
- measurements + errors at clock locations
- We assumed to be able to correct for land elevation change below the mm-level

4 - Summary

- Which accuracies do we need for proper validation?
 - largest time-variable signals detectable at 1e-18 (~1cm geoid height) accuracy of clocks
 - To actually use an optical atomic clock network to validate GRACE or next generation gravity missions (NGGM) we need to go below that level:
 At 1e-19 (~1mm) we reach a point where only short time hydrological variations pose a problem.

Here, the correction factor GNSS reaches its limits as well

	UNIVERSITÄT BONN	
	GRACE	Optical atomic clock network
Temporal resolution	1 month (daily/weekly solutions disregarded)	At least daily, maybe even < 1 hour
Spatial resolution	 > 330 x 330 km ≙ I_{max} = 120 This is rather an optimistic view considering that filters are used afterwards 	< 3000 km (depending on extent of the network) $ \triangleq I_{min} = 13 $ > 100 km (depending on clock distribution) $ \triangleq I_{max} = 400 $

	used afterwards	clock distribution) $ \triangleq I_{max} = 400 $
Uncertainty	mm geoid height, averaged over 330 x 330 km	Right now: Few cm geoid height (but rapidly improving, possibly at 1mm in the next decade), point-wise

SG	GNSS	Optical atomic clock network	
Measures gravity variations	Measures (vertical) land motion	Measures geopotential differences	
Often highly affected by direct gravitational effect of local hydrologic	Good distribution of stations with free available data	Rapidly improving technology	
changes	Affected by local land motion that is not aligned with elastic loading	Clocks sitting on the surface measure the vertical land motion induced potential change	
	Combination allows for direct estimation of geoid height variations		
Combination might be interesting e.g. for a better SG signal separation			

Paper in preparation: Schröder et al.

Thank you for taking the time to go through our slides!

We are looking forward to the online discussions before, after, and during the actual **session at May 7th**

You can also write me an Email: schroeder@geod.uni-bonn.de

References

- Bothwell et al. (2019): JILA SrI optical lattice clock with uncertainty of 2.0 x 10^{-18.} https://doi.org/10.1088/1681-7575/ab4089
- Crossley et al. (2014): Comment on: 'The quest for a consistent signal in ground and GRACE gravity time-series', by Michel Van Camp, Olivier de Viron, Laurent Metivier, Bruno Meurers and Olivier Francis. <u>https://doi.org/10.1093/gji/ggu259</u>
- Forootan et al. (2013): Comparisons of atmospheric data and reduction methods for the analysis of satellite gravimetry observations. <u>https://doi.org/10.1002/jgrb.50160</u>
- Lisdat et al. (2016): A clock network for geodesy and fundamental science. https://doi.org/10.1038/ncomms12443
- Ludlow et al. (2015): Optical atomic clocks. <u>https://doi.org/10.1103/RevModPhys.87.637</u>
- Pail et al. (2015): Science and User Needs for Observing Global Mass Transport to Understand Global Change and to Benefit Society. <u>https://doi.org/10.1007/s10712-015-9348-9</u>
- Poli et al. (2014): Optical atomic clocks. <u>https://doi.org/10.1393/ncr/i2013-10095-x</u>
- Ray (2006): Systematic errors in GPS position estimates. paper presented at IGS Workshop 2006. Available at <u>acc.igs.org/trf/igs06-errors.ppt</u>
- Takamoto et al. (2015): Frequency ration of Sr, Yb, and Hg based optical lattice clocks and their applications . <u>https://doi.org/10.1016/j.crhy.2015.04.003</u>
- Van Camp et al. (2014): The quest for a consistent signal in ground and GRACE gravity time-series. <u>https://doi.org/10.1093/gji/ggt524</u>
- Voigt et al. (2016): Report on the Data Base of the International Geodynamics and Earth Tide Service (IGETS). <u>https://doi.org/10.2312/GFZ.b103-16087</u>

