

Diagnostic efficiency

a diagnostic approach for model evaluation

Robin Schwemmle¹, Dominic Demand¹, Markus Weiler¹

Albert-Ludwigs-Universität Freiburg

robin.schwemmle@hydrology.uni-freiburg.de

¹Chair of Hydrology University of Freiburg Freiburg, Germany

Diagnostic model evaluation

UNI FREIBURG

Origin of errors in hydrological simulations

Model parameters

UNI FREIBURG

Wagener and Gupta (2005), SERRA

Model structure

Clark et al. (2008), WRR

Initial and boundary conditions

Origin of errors in hydrological simulations

Model parameters

UNI FREIBURG

Yatheendras et al. (2008), WRR

Model structure

Clark et al. (2008), WRR

• Traditional efficiency measures (e.g. Kling-Gupta Efficiency)

 \rightarrow diagnostic meaning of a number between - ∞ and 1?

- Diagnostic signatures (e.g. high flow bias)
 - \rightarrow comprehensive visualization?

- **Definition of a diagnostic efficiency measure** based on flow • duration curve and correlation which hints to the origin of errors
- Visualising contributions of different model errors •
- Provide an easily extendable evaluation tool Python

diag-eff on GitHub: https://github.com/schwemro/diag-eff Documentation (including tutorials): https://diag-eff.readthedocs.io/en/latest/

Diagnostic Efficiency (*DE*)

Schwemmle et al. (2020) in prep., (will be submitted to HESS shortly after EGU2020)

CAMELS dataset; Addor et al. (2017)

Mimicking errors by systematic manipulation of an observed streamflow time series:

- \rightarrow constant error (i)
- ightarrow dynamic error (ii)
- → timing error (iii)

Mimicking constant error (i)

UNI FREIBURG

probability

Multiplying the observed time series with a constant >1 to generate a positive offset

$$DE = 1 - \sqrt{\overline{B_{rel}}^2} + |B_{area}|^2 + (r-1)^2$$

arithmetic mean of
the relative bias $\overline{B_{rel}} = \frac{1}{N} \sum_{i=0}^{i=1} B_{rel}(i)$

Mimicking dynamic error (ii)

UNI FREIBURG

> Multiplying the observed time series with an linearly interpolated vector (1.5, ..., 0.5) to increase high flows and decrease low flows

Time

Exceedance probability

$$E = 1 - \sqrt{B_{rel}^2} + |B_{area}|^2 + (r-1)^2$$

area of the
residual bias $|B_{area}| = \int_0^1 |B_{res}(i)| di$

Calculation of the dynamic error term

Randomizing the order of the observed time series

$$DE = 1 - \sqrt{\overline{B_{rel}}^2} + |B_{area}|^2 + (r-1)^2$$

$$\downarrow$$
linear correlation between

simulations and observations

HYDR(

DGY

Diagnostic polar plot

Proof of concept

Comparison to KGE

UNI FREIBURG

$$KGE = 1 - \sqrt{(\beta - 1)^2 + (\alpha - 1)^2 + (r - 1)^2}$$

ratio between bias error and flow variability error

$$\varphi = \arctan 2(\beta - 1, \alpha - 1)$$

Real case example (Newman et al. (2015))

- positive dynamic error dominates
- slight positive constant error

UNI FREIBURG

> lowest share by timing

Schwemmle et al. (2020) in prep., (will be submitted to HESS shortly after EGU2020)

HYDR()LOGY

Comparison to KGE

Polar plot of *KGE* leads to different error contributions than diagnostic polar plots

UNI FREIBURG

- theoretical proof of concept and real world applicability
- diagnostic polar plots provide hints on the origin of errors
- blueprint for systematic development of other diagnostic efficiency measures

diag-eff on GitHub:

https://github.com/schwemro/diag-eff

Documentation (including tutorials): https://diag-eff.readthedocs.io/en/latest/

robin.schwemmle@hydrology.uni-freiburg.de

- Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, in, version 2.0 ed., Boulder, CO: UCAR/NCAR, 2017.
- Clark, M. P., Slater, A. G., Rupp, D. E., Woods, R. A., Vrugt, J. A., Gupta, H. V., Wagener, T., and Hay, L. E.: Framework for Understanding Structural Errors (FUSE): A modular framework to diagnose differences between hydrological models, Water Resources Research, 44, 10.1029/2007wr006735, 2008.
- Coxon, G., Freer, J., Westerberg, I. K., Wagener, T., Woods, R., and Smith, P. J.: A novel framework for discharge uncertainty quantification applied to 500 UK gauging stations, Water Resources Research, 51, 5531-5546, 10.1002/2014wr016532, 2015.
- Newman, A. J., Clark, M. P., Sampson, K., Wood, A., Hay, L. E., Bock, A., Viger, R. J., Blodgett, D., Brekke, L., Arnold, J. R., Hopson, T., and Duan, Q.: Development of a large-sample watershed-scale hydrometeorological data set for the contiguous USA: data set characteristics and assessment of regional variability in hydrologic model performance, Hydrol. Earth Syst. Sci., 19, 209-223, 2015.
- Staudinger, M., Stoelzle, M., Cochand, F., Seibert, J., Weiler, M., and Hunkeler, D.: Your work is my boundary condition!: Challenges and approaches for a closer collaboration between hydrologists and hydrogeologists, Journal of Hydrology, 571, 235-243, 10.1016/j.jhydrol.2019.01.058, 2019.
- Wagener, T., and Gupta, H. V.: Model identification for hydrological forecasting under uncertainty, Stochastic Environmental Research and Risk Assessment, 19, 378-387, 10.1007/s00477-005-0006-5, 2005.
- Yatheendradas, S., Wagener, T., Gupta, H., Unkrich, C., Goodrich, D., Schaffner, M., and Stewart, A.: Understanding uncertainty in distributed flash flood forecasting for semiarid regions, Water Resources Research, 44, 10.1029/2007wr005940, 2008.
- Yilmaz, K. K., Gupta, H. V., and Wagener, T.: A process-based diagnostic approach to model evaluation: Application to the NWS distributed hydrologic model, Water Resources Research, 44, 10.1029/2007wr006716, 2008.

