
Albert-Ludwigs-Universität Freiburg

Robin	Schwemmle1,	Dominic	Demand1,	Markus	Weiler1

Diagnostic	efficiency
-

a	diagnostic	approach	for	
model	evaluation

1Chair	of	Hydrology
University	of	Freiburg
Freiburg,	Germany

robin.schwemmle@hydrology.uni-freiburg.de



Diagnostic	model	evaluation
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Origin	of	errors	in	hydrological	simulations
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Wagener	and	Gupta	(2005),	SERRA
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Origin	of	errors	in	hydrological	simulations

4

Wagener	and	Gupta	
(2005),	SERRA

Yatheendras	et	al.	
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Research	gap
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• Traditional	efficiency	measures	(e.g.	Kling-Gupta	Efficiency)			

à diagnostic	meaning	of	a	number	between	-∞	and 1?

• Diagnostic	signatures	(e.g.	high	flow	bias)

à comprehensive	visualization?

Yilmaz	et	al.	
(2008),	WRR



Research	objectives

• Defintion	of	a	diagnostic	efficiency	measure	based	on	flow	

duration	curve	and	correlationwhich	hints	to	the	origin	of	

errors

• Visualising	contributions	of	different	model	errors

• Provide	an	easily	extendable	evaluation	tool
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https://github.com/schwemro/diag-effdiag-eff	on	GitHub:

Documentation	 (including	tutorials): https://diag-eff.readthedocs.io/en/latest/



Diagnostic	Efficiency	(DE)
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𝐷𝐸 = 1 −	 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡	𝑒𝑟𝑟𝑜𝑟 + 𝑑𝑦𝑛𝑎𝑚𝑖𝑐	𝑒𝑟𝑟𝑜𝑟 + 𝑡𝑖𝑚𝑖𝑛𝑔	𝑒𝑟𝑟𝑜𝑟�

observed
simulated

𝐷𝐸 = 1−	 𝐵789
: + 	 𝐵;78; : + 	(𝑟 − 1):

�

Schwemmle et	al.	(2020)	in	prep.,	(will	be	submitted	to	HESS	shortly	after	EGU2020)



Mimicking	errors
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CAMELS	dataset;	Addor et	al.	(2017)

Mimicking	errors	by systematic	
manipulation	 of	an	observed	
streamflow	time	series:

à constant	error	(i)

à dynamic	error	(ii)

à timing	error	(iii)

gauge_id:	13331500;	gauge_name:	Minam 160	River	near Minam,	OR,	U.S.	



Mimicking	constant	error	(i)
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observed
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𝐷𝐸 = 1−	 𝐵789
: + 	 𝐵;78; : + 	(𝑟 − 1):

�

Multiplying	 the observed	time	series	with	a	
constant	>1	to generate	a	positive	offset

arithmetic	mean	of	
the	relative	bias 𝐵789 = 	

>
?	∑ 𝐵789(i)BC>

BCD



Mimicking	dynamic error (ii)
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observed

manipulated

𝐷𝐸 = 1−	 𝐵789
: + 	 𝐵;78; : + 	(𝑟 − 1):

�

Multiplying	 the observed	time	series	with	
an	linearly	interpolated	vector	(1.5,	...,	0.5)	
to	increase	high	flows and	decrease	low	
flows

area	of	the	
residual	bias

𝐵;78; =	 ∫ 𝐵78F(𝑖)
>
D 	𝑑𝑖



Calculation of the dynamic error term
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𝐷𝐸 = 1 −	 𝐵789
: + 	 𝐵;78; : +	(𝑟 − 1):

�

𝐵;78; = 	 ∫ 𝐵78F(𝑖)
>
D 	𝑑𝑖

𝐵789(i) =
𝑄FBH 𝑖 	− 	𝑄IJF (𝑖)

𝑄IJF(𝑖)

observed

manipulated

area	of	the	residual	biasresidual	bias

relative	bias

𝐵KB7 = 	L 𝐵78F(𝑖)
D.N

D
	𝑑𝑖

𝐵78F i = 𝐵789(i) −	𝐵789

direction	of	dynamic	error	
4

1

2 3

0 1

𝐵F9IO8 = 	P
𝐵;78; 	 Q	 −1 , 								𝐵KB7 > 0
𝐵;78; 															, 								𝐵KB7 < 0
0																									, 										𝐵KB7 = 0

slope	of	the	residual	bias 5



Mimicking	timing error (iii)
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𝐷𝐸 = 1−	 𝐵789
: + 	 𝐵;78; : + 	(𝑟 − 1):

�

Randomizing	 the	order	of	the	observed	
time	series

linear	correlation	between	
simulations	and	observations

observed

manipulated



Diagnostic	polar	plot
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𝐷𝐸 = 1 −	 𝐵789
: +	 𝐵;78; : + 	(𝑟 − 1):

�

𝜑 = 	𝑎𝑟𝑐𝑡𝑎𝑛2(𝐵789, 𝐵F9IO8X
ratio	between	constant	and	dynamic	error

Schwemmle et	al.	(2020)	in	prep.,	(will	be	
submitted	to	HESS	shortly	after	EGU2020)



Proof	of	concept
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Dynamic	error
Timing	error

Constant	error

observed manipulated



Comparison	to	KGE
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Dynamic	error

Timing	error

Constant	error

observed
manipulated

𝐾𝐺𝐸 = 1 −	 𝛽 − 1 : + 𝛼 − 1 : +	 (𝑟− 1):�

𝜑 = 	𝑎𝑟𝑐𝑡𝑎𝑛2(𝛽− 1, 𝛼 − 1)

ratio	between	bias	error	and	flow	variability	error

Polar	plot	for	KGE	falsely	
indicate	an	equal	share	of
bias	error	and	variability	error

1

1

Contribution	 of	bias	error	is
falsely	displayed

2
2



Real	case	example (Newman	et	al.	(2015))
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Schwemmle et	al.	(2020)	in	prep.,	(will	be	submitted	to	HESS	shortly	after	EGU2020)

gauge_name:	Minam 160	River	 nearMinam,	 OR,	U.S.	

• positive	dynamic	
error	dominates

• slight	positive	
constant	error

• lowest	share	by	
timing



Comparison	to	KGE
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Polar	plot	of	KGE	leads	
to	different	error	
contributions	 than	
diagnostic	polar	plots

gauge_name:	Minam 160	River	 nearMinam,	 OR,	U.S.	

Schwemmle et	al.	(2020)	in	prep.,	(will	be	submitted	to	HESS	shortly	after	EGU2020)



Conclusions

• theoretical	proof	of	concept	and	real	world	
applicability

• diagnostic	polar	plots	provide	hints	on	the	origin	of	
errors

• blueprint	for	systematic	development	of	other	
diagnostic	efficiency	measures	
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https://github.com/schwemro/diag-effdiag-eff	on	GitHub:

Documentation	 (including	tutorials): https://diag-eff.readthedocs.io/en/latest/
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