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Introduction
Numerical cloud models consist of
differential equations which describe
micro physical processes. These equa-
tions come with parameters, some of
which cannot be measured, but need to
be determined using inverse methods.
For this we develop efficient algorithms
and a benchmark cloud model for testing
these algorithms.

Cloud Model
We consider a vertical stack of volume boxes (a column) with specific quantities of air
and water in different phases. The column is considered from a Lagrangian point of
view while moving with the surrounding flow. During elevations each box may change
its height so that its total mass of air is conserved at all times. The column extends
up to a height where precipitation inflow from the top can be ignored. The loss of
rain drops at the bottom of the column (precipitation on the ground) is our reference
observational data. Within each box

vapour

cloud dropletsrain drops

condensation (C)

accretion (A2)

autoconversion (A1, A
′
1)

evaporation (E,E ′)

sedimentation (S, S ′)

• water mass occurs as vapor, small droplets, and rain drops
• we keep book of mass and number of rain drops in contrast to, e.g., ICON or IFS
• thermodynamics is affected by vertical movement and latent heat production
• precipitation may enter from the top and drop out at the bottom.

Model Equations
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with the saturation qs = qv − qvs and qs− = min{0, qv − qvs}

Cloud droplets

A key aspect is a novel treatment of droplet activation without artificial switches and
without saturation adjustment. For this we have introduced the following nonlinear
relation (1) between the droplet count and mass densities nc and qc.

(1) nc =
qcN∞

qc +N∞m0
coth

qc
N0m0

Droplet count as a function of droplet mass

With a proper choice of the associated parameters m0, N0, and N∞ this provides a
means to emulate Köhler theory of droplet activation.

Cloud process terms

• Autoconversion (A1, A
′
1): two cloud droplets collide and form a rain drop

• Accretion (A2): a cloud droplet and a rain drop collide and form a larger rain drop
• Condensation (C): cloud droplets form from water vapor and CCN
• Evaporation (E, E ′): drops grow or shrink due to diffusion of water vapor
• Sedimentation (Sout, S

′
out): droplets fall due to gravity; frictional forces act against

the gravity force

Cloud Model Implementation
For the droplet mass density qc we use a differential equation which is similar to those
of other cloud models, and which assumes the form

(2) q̇c = cn2/3c q1/3c − a1qc − a2q2c

where c, a1, and a2 are continuous expressions of the other model variables. The
physical solution of (2) can be solved numerically with an implicit Euler type scheme.

Numerical computation order

To be specific, starting from the current values qv,i, qc,i, qr,i, nr,i, nc,i, pi, Ti, and ρi in
some given box at time ti = iτ , we first solve

implicit qr,i+1/2 = qr,i − τ
(
E(qr,i+1/2, nr,i+1/2) + Sout(qr,i+1/2)

)
,(3)

nr,i+1/2 = nr,i − τ
(
E ′(qr,i+1/2, nr,i+1/2) + S ′out(nr,i+1/2)

)
,(4)

qc,i+1 = qc,i + τ
(
C(qc,i+1) − A1(qc,i+1) − A2(qc,i+1, qr,i+1/2, nr,i+1/2)

)
,(5)

and finally, we update the new values of qr and nr as

explicit qr,i+1 = qr,i+1/2 + τ
(
A1(qc,i+1) + A2(qc,i+1, qr,i+1/2, nr,i+1/2) + Sin

)
,(6)

nr,i+1 = nr,i+1/2 + τ (A′1(qc,i+1) + S ′in).(7)

while in (6) and (7) the inflows Sin and S ′in are given by the corresponding outflows of
the neighboring box, which have been determined in steps (3) and (4). Note that this
allows for a straightforward SIMD parallelization (single instruction, multiple data) of
the column model.

Analytical Solution Properties
The model equations with the non-Lipschitz right-hand side allow for nontrivial smooth
solutions. We proved under mild assumptions on the external forcing that this system
of equations has a unique physically consistent solution, i.e., a solution with a nonzero
droplet population in the supersaturated regime. To this end we rewrite the system to
a Fuchs-type equation

t
dy

dt
+ Ay = tF (y, t)

via a substitution with leading order time dependencies, which is a tested approach
for spherically symmetric static fluid bodies with a given equation of state, cf. [3].

Inverse Methods
The determination of model parameters, e.g. N∞ in (1), is an ill-conditioned or even
ill-posed inverse problem which requires sophisticated numerical algorithms, e.g.,
Levenberg-Marquardt regularization. These methods minimize the error between
model output and observations (e.g., precipitation over time). Currently our model
comes with ten parameters to be estimated from these data.

Parameter dependence on the numerical resolution
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In a numerical study we have investigated
how model parameters depend on the res-
olution of the model. Therefore we have
1. set up a column with constant updraft

and 1 km vertical extension,
2. generated data with a high resolution

run,
3. fitted the parameters in lower vertical

resolution runs to the data.

Results:
• the parameters α, k2 and k3 decrease with coarser resolution
• the sedimentation parameters cq and cn increase with coarser resolution
• some parameters are unaffected by the resolution

Outlook
• implementation as a micro physics routine in ICON
• parameter estimations on a multitude of meteorological conditions (e.g. slow/fast
updrafts) and with external data sets

• extension of the model to the ice phase
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