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Summary Page

2D model example 3D model example software: TensorFlow,
Abstract: Uncertainty quantification is an important aspect of geo- GemPy
logical modelling and model interpretation. Recent developments in
geological modelling allow us to view the inversion as a problem in
Bayesian inference, incorporating the uncertainties in the observa-
tions, the forward models and the prior knowledge from geologists.
The sampling method Markov chain Monte Carlo (MCMC) is then of-

ten applied to solve this inference problem.
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Methods:

® The presented work is about applying recent developed
Hessian informed MCMC method to accelerate the uncertainty a) Random walk b) HMC c) our approach gpCN
quantification during geomodelling.

G Gempg

Posterior by RMH, steps:10000, accept rate22.4% Fosterior by HMC, steps 10000, accept rate:56 33% Posterior by gpCN, steps:10000, accept rate:34.95%
-10

® We utilize state-of-the-art differentiable programming to ]
efficiently calculate the gradient and Hessian of the negative log .‘ ML
posterior respect to the parameters of interest. ~ Ll
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® We implement Adaptive Moment Estimation (Adam) to find the 1 g -
Maximum a Posterior point(MAP), and then, construct the e e O e, FEBET T BB
. . . . position (m) position (m) osition (m]
Laplace approximation of the posterior at MAP to achieve more
efficient posterior search.
Results: A gravity inversion is conducted in this study. The sampling o -
chain by the novel Hessian informed MCMC shows a better mixing and £ g
lower autocorrelation, which demonstrate a more efficient estimation -
of the uncertainties.
Methods’ Computation time for 10000 samples e e -
RMH 71.60s ::
HMC 215.10s - -
Finding MAP by Adam: 61.89s+Hessian Calculation?: 0.43s § o =
gpCN +run chain:38.90s - §om
= Total time cost: 101.22 s o e
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Motivation

Uncertainties in Geomodeling

Y Positions of data points )

Difficulties:
 Data is often noisy
hd H yp e r- p a ra m ete rS Input points amﬁncertainties Interface model

Multiple realizations

- Methods: map-based interpolation approaches for simple model structures, implicit
u N approaches for full 3-D settings

° Knowledge about the expected /—G Uncertainties of modeled interface }
structure setting often available

Uncertainty vectors . o
at model points Multiple realizations

. Reference model

Methods: p-field techniques and uncertainty bounds for full 3-D explicit models;
uncertainties in interpolation parameters for implicit models

/‘G Position and number of faults )

--------------- T

Fault position and model Fault realizations

Example of a 3D geological model built in Gempy (de la

Methods: stochastic fault modeling methods, combined workflows for integrated
Va rga et. al. s 201 9) stochastic structural modeling

Uncertainties in Geomodeling,(Wellmann and Caumon, 2018)
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Motivation

Bayesian inference:

* Not only the point estimation of the best-fit parameters, but a complete statistical
description of the parameter values that is consistent with the data

* Incorporate our knowledge of the geology, and combine observations

MCMC Sampling

_<

Geophysical

implicit Model likelihood Y|

forward model

direct probably o
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Motivation

Bayes’ theorem

p(6|d) =

where the denominator, marginal likelihood p(d) is normally not computable,
one common solution is to use Markov Chain Monte Carlo (MCMC)

Standard random walk MCMC *

« Set k = 0 and pick u©.

* Propose VK = ytk) 1 geth) ¢(k) ~ N(O, C).

« Set ulkt1) = v(k with probability a (u®, v9) .
« Set ukt1) = W otherwise.

*k— k+1.

"Cotter, Simon L., et al. "MCMC methods for functions: modifying old algorithms to make them faster.” Statistical Science (2013): 424-446.
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Motivation

Problem: Atandard random walk MCMC method works fine in low
dimension problems but is not efficient in high dimesional problem, therefore
leads to ineffcient posterior search

Our approach: Applying a recently-developed Hessian informed MCMC

Difficulties: Implementation for efficient calculation of Hessian
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Dimension independent MCMC

Outline

Dimension independent MCMC
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Dimension independent MCMC

Based on Rudolf and Sprungk' (2018):

Algorithm 1 Generalized Preconditioned Crank-Nicolson

Initialize m(®) ~ q(m)
for iteration: k=1,2,... do
Propose : x%@9 = m, + /(1 — 82)(x®) —m,) + pc® . ¢® ~ A(0, C))
Acceptance Probability :
a, (M1, Meang ) := min {1, exp (A (M1 ) — A (Mcand )}
Where A(m) =  (m, dobs) + 3 [ — Mpriorl [+ — 5 [m — my I,

and ® (m, dops) = % |f(m) — obs“r—

u ~ Uniform (u; 0,1) e
if u < a, then

Accept the proposal : m() « meand  Question:
else * How to determine covariance of
Reject the proposal : m\) «+ m(=1) posterior C, ?
end if
end for

"Rudolf, Daniel, and Bjérn Sprungk. "On a generalization of the preconditioned Crank—Nicolson Metropolis algorithm.” Foundations of Computational Mathematics 18.2
(2018)' 309-343.
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Dimension independent MCMC

Construct the covariance of posterior’

1. Compute the Maximum a posteriori (MAP), by minimize the negative log posterior

1
m, = in7(m) = (| =||G(m - m-—m
argmmlnj( ) (2 1G(m) — obs||rn0|se1 +5 2 H prlorHCpnor>
available methods:

— First-order methods: Stochastic gradient descent, Adaptive Moment Estimation
(Adam), etc.

— Second-order methods: Newtown-CG method, etc.
2. Compute the Hessian of negative log of the posterior at MAP

Hmisfit (my)
Question:
3. Construct the Laplace approximation to the posterior: * How to efficiently
1 calculate Hessian
CpOSt - (HmISflt( ) + Cpnor) H ?

Villa, Umberto, Noemi Petra, and Omar Ghattas. "hIPPYIib: An Extensible Software Framework for Large-Scale Inverse Problems Governed by PDEs; Part I:
Deterministic Inversion and Linearized Bayesian Inference.” arXiv preprint arXiv:1909.03948 (2019).
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Automatic Differentiation
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Automatic Differentiation
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Automatic Differentiation

A technique to evaluate the derivative of a function by a computer program.
Implementation software library: Tensorflow, Theano etc.
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illustration of auto-diff of backward propogation (Wikipedia, Berland, 2007)

part of computational graph in Gempy-Tensorflow
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Application / Synthetic test cases
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Application / Synthetic test cases
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Application / Synthetic test cases

Gravity simulation

2D polygon gravity

graity response t suface * A simple 2D polygon layer model is
built in Tensorflow
- * The model is defined by several control
points (5 in the left example) and
T interpolated by Gaussian Process
* A constant layer thickness is added to
- generate the lower bound, and a
o constant density is assigned to the
- layer for simplicity
‘ » The gravity response at the surface is
L f\\ calculated following the line integration
- — o algorithm for a polygon’

-200 150 -100  -50 0 0 W0 150 200

"Won, 1. J., and Michael Bevis. "Computing the gravitational and magnetic anomalies due to a polygon: Algorithms and Fortran subroutines.” Geophysics 52.2 (1987):
232-238.
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Application / Synthetic test cases

3D polygon gravity

» 3D geological model is build in
Tensorflow as a submodule of Gempy’

* The model is defined by several
surface points and orientation points
(12 surface points and 4 orientation
points in the left example)

* An implicit method based on universal
co-kriging is used to interpolate scaler
fields

* Different density is assigned to each
layer and the gravity is calculated at the
surface, the details of the algorithm can
be fund in the documentation of Gempy

de la Varga, Miguel, Alexander Schaaf, and Florian Wellmann. "GemPy 1.0: open-source stochastic geological modeling and inversion.” Geoscientific Model
Development (2019).
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Results
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Results

2D gravity forward simulation Prior

1e—5 Synthetic gravity data 167

4573 Prior density plot, mean: -100.0, std: 40.0
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Results

Posterior estimation by different MCMC methods

a) Random walk b) HMC c) our approach gpCN
Posterior by RMH, steps:10000, accept rate:22 4% Posterior by HMC, steps:10000, accept rate:56.33% Posterior by gpCN, steps:10000, accept rate:34.95%
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2RHM: Random Walk Metropolis Hastings ; HMC: Hamiltonian Monte Carlo; gpCN: generalized Preconditioned Crank—Nicolson.
"Trace plot: the left 2 points
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Discussion
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Discussion

Autocorrelation
100 100 100
RMH HMC gpCN
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* no burn-in step is used in this example just to show the initial behaviour of the
traces of different methods

* gpCN shows a better mixing very quickly, while RMH and HMC would need to run
longer to have a better mixing results

* we can always adjust step size to have higher acceptance rate, but small step size
normally will lead to higher autocorrelation between samples which leads to slow
convergence
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Discussion

Computational cost for 2D gravity example

Methods' Computation time for 10000 samples
RMH 71.60s
HMC 215.10s
Finding MAP by Adam: 61.89s+Hessian Calculation?: 0.43s
gpCN +run chain:38.90s
= Total time cost: 101.22 s

The computation time highly depend on the forward simulation. Although a
properly graphed Tensorflow program has a relatively fast calculation of
gradient (~ 10ms for the 2D example), calculating gradient at each step of
the chain boosted the time cost for HMC. However, gpCN we only calculate
the Hessian once, therefore it has a better time-efficiency as the number of
samples grow.

"Runinng on a single core of 2,3 GHz Intel Core i5
2Excuting computational graph after first compiling/tracing

Computational
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Summary
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Summary

This work demonstrate the efficiency of using novel Hessian informed MCMC
in geomodeling to obtain a more efficient estimation of the uncertainties.

Future Work
* implementation on 3D model is still under progress
« application on real cases
» detailed comparison with mroe advanced HMC algorithm (e.g. NUTS)
* investigation of identified model covariance, as an additional interesting aspect
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