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Abstract: Uncertainty quantification is an important aspect of geo-
logical modelling and model interpretation. Recent developments in
geological modelling allow us to view the inversion as a problem in
Bayesian inference, incorporating the uncertainties in the observa-
tions, the forward models and the prior knowledge from geologists.
The sampling method Markov chain Monte Carlo (MCMC) is then of-
ten applied to solve this inference problem.

Methods:

• The presented work is about applying recent developed
Hessian informed MCMC method to accelerate the uncertainty
quantification during geomodelling.

• We utilize state-of-the-art differentiable programming to
efficiently calculate the gradient and Hessian of the negative log
posterior respect to the parameters of interest.

• We implement Adaptive Moment Estimation (Adam) to find the
Maximum a Posterior point(MAP), and then, construct the
Laplace approximation of the posterior at MAP to achieve more
efficient posterior search.

Results: A gravity inversion is conducted in this study. The sampling
chain by the novel Hessian informedMCMC shows a better mixing and
lower autocorrelation, which demonstrate a more efficient estimation
of the uncertainties.

Methods1 Computation time for 10000 samples
RMH 71.60s
HMC 215.10s

gpCN
Finding MAP by Adam: 61.89s+Hessian Calculation2: 0.43s

+run chain:38.90s
= Total time cost: 101.22 s

2D model example 3D model example software: TensorFlow,
GemPy

a) Random walk b) HMC c) our approach gpCN
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Motivation

Uncertainties in Geomodeling

Difficulties:
• Data is often noisy
• Hyper-parameters
But:
• Knowledge about the expected
structure setting often available

Example of a 3D geological model built in Gempy (de la
Varga et. al., 2019)

Input points and uncertainties Interface model Multiple realizations

Uncertainty vectors 
at model points

Reference model Multiple realizations

Fault position and model Fault realizations

Methods: map-based interpolation approaches for simple model structures, implicit
approaches for full 3-D settings

Methods: p-�eld techniques and uncertainty bounds for full 3-D explicit models;
uncertainties in interpolation parameters for implicit models

Methods: stochastic fault modeling methods, combined work�ows for integrated
stochastic structural modeling

AA Positions of data points

B Uncertainties of modeled interface

C Position and number of faults

Uncertainties in Geomodeling,(Wellmann and Caumon, 2018)
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Motivation

Bayesian inference:
• Not only the point estimation of the best-fit parameters, but a complete statistical
description of the parameter values that is consistent with the data

• Incorporate our knowledge of the geology, and combine observations

Geophysical
	forward	model

prior			

implicit	Model

direct	probably
estimation

Conceptual Bayesian network
Combining Geological/ Geophysical observations and prior
knowledge to reduce uncertainties in the geological model

MCMC Sampling

Bayesian inference

 

 

Gempy

likelihood					

 

likelihood					

 

Posterior

likelihood
function

Prior

Marginal
likelihood
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Motivation

Bayes’ theorem

p(θ|d) = p(θ)p(d|θ)
p(d)

where the denominator, marginal likelihood p(d) is normally not computable,
one common solution is to use Markov Chain Monte Carlo (MCMC)

Standard random walk MCMC 1

• Set k = 0 and pick u(0).
• Propose v(k) = u(k) + βξ(k), ξ(k) ∼ N(0, C).
• Set u(k+1) = v(k) with probability a

(
u(k), v(k)

)
.

• Set u(k+1) = u(k) otherwise.
• k→ k + 1.

1Cotter, Simon L., et al. ”MCMC methods for functions: modifying old algorithms to make them faster.” Statistical Science (2013): 424-446.

6 of 25 Uncertainty quantification in geomodeling by Hessian informed MCMC
Zhouji Liang (liang@aices.rwth-aachen.de) | RWTH Aachen University
EGU 2020 | May 6, 2020

Modern 

Inverse 

Problems
M P

i



Motivation

Problem: Atandard random walk MCMC method works fine in low
dimension problems but is not efficient in high dimesional problem, therefore
leads to ineffcient posterior search

Our approach: Applying a recently-developed Hessian informed MCMC

Difficulties: Implementation for efficient calculation of Hessian
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Dimension independent MCMC

Based on Rudolf and Sprungk1 (2018):

Algorithm 1 Generalized Preconditioned Crank-Nicolson
Initialize m(0) ∼ q(m)
for iteration : k = 1,2, . . . do
Propose : xcand = mv +

√
(1− β2)(x(k) −mv) + βξ(k), ξ(k) ∼ N (0,Cv)

Acceptance Probability :
aν (mi-1,mcand ) := min {1, exp (∆ (mi-1 )−∆(mcand ))}
Where ∆(m) = Φ (m,dobs) + 1

2
∥∥m−mprior

∥∥2
C−1
pior
− 1

2 ∥m−mν∥2C−1
ν

and Φ(m,dobs) = 1
2 ∥f(m)− dobs∥2Γ−1

noise
u ∼ Uniform (u;0,1)
if u < aν then
Accept the proposal : m(i) ← mcand

else
Reject the proposal : m(i) ← m(i−1)

end if
end for

1Rudolf, Daniel, and Björn Sprungk. ”On a generalization of the preconditioned Crank–Nicolson Metropolis algorithm.” Foundations of Computational Mathematics 18.2
(2018): 309-343.
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posterior Cv ?



Dimension independent MCMC

Construct the covariance of posterior1

1. Compute the Maximum a posteriori (MAP), by minimize the negative log posterior

mν := arg min
m
J (m) :=

(
1
2 ∥G(m)− dobs∥2Γ−noise1 +

1
2
∥∥m−mprior

∥∥2
C−1
prior

)
available methods:
– First-order methods: Stochastic gradient descent, Adaptive Moment Estimation
(Adam), etc.

– Second-order methods: Newtown-CG method, etc.
2. Compute the Hessian of negative log of the posterior at MAP

Hmisfit (mν)

3. Construct the Laplace approximation to the posterior:

Cpost =
(
Hmisfit (mν) + C−1prior

)−1
1Villa, Umberto, Noemi Petra, and Omar Ghattas. ”hIPPYlib: An Extensible Software Framework for Large-Scale Inverse Problems Governed by PDEs; Part I:

Deterministic Inversion and Linearized Bayesian Inference.” arXiv preprint arXiv:1909.03948 (2019).
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Automatic Differentiation

A technique to evaluate the derivative of a function by a computer program.
Implementation software library: Tensorflow, Theano etc.

∂y
∂x

=
∂y
∂w1

∂w1

∂x
=

(
∂y
∂w2

∂w2

∂w1

)
∂w1

∂x
=

((
∂y
∂w3

∂w3

∂w2

)
∂w2

∂w1

)
∂w1

∂x
= · · · (1)

illustration of auto-diff of backward propogation (Wikipedia, Berland, 2007)

part of computational graph in Gempy-Tensorflow
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Application / Synthetic test cases

Gravity simulation

2D polygon gravity
• A simple 2D polygon layer model is
built in Tensorflow

• The model is defined by several control
points (5 in the left example) and
interpolated by Gaussian Process

• A constant layer thickness is added to
generate the lower bound, and a
constant density is assigned to the
layer for simplicity

• The gravity response at the surface is
calculated following the line integration
algorithm for a polygon1

1Won, I. J., and Michael Bevis. ”Computing the gravitational and magnetic anomalies due to a polygon: Algorithms and Fortran subroutines.” Geophysics 52.2 (1987):
232-238.
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Application / Synthetic test cases

3D polygon gravity
• 3D geological model is build in
Tensorflow as a submodule of Gempy1

• The model is defined by several
surface points and orientation points
(12 surface points and 4 orientation
points in the left example)

• An implicit method based on universal
co-kriging is used to interpolate scaler
fields

• Different density is assigned to each
layer and the gravity is calculated at the
surface, the details of the algorithm can
be fund in the documentation of Gempy

1de la Varga, Miguel, Alexander Schaaf, and Florian Wellmann. ”GemPy 1.0: open-source stochastic geological modeling and inversion.” Geoscientific Model
Development (2019).
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Results

2D gravity forward simulation Prior

• control points are mutable in z direction
• Synthetic gravity data is generated by 1000
forward simulations with high variation on the left
end control points (shown on the left)

• Prior probability distribution is defined as normal
around −100 m

• An oversampled model with 30 control points is
used for the inversion
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Results

Posterior estimation by different MCMC methods
a) Random walk b) HMC c) our approach gpCN

2RHM: Random Walk Metropolis Hastings ; HMC: Hamiltonian Monte Carlo; gpCN: generalized Preconditioned Crank–Nicolson.
1Trace plot: the left 2 points
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Discussion

Autocorrelation

• no burn-in step is used in this example just to show the initial behaviour of the
traces of different methods

• gpCN shows a better mixing very quickly, while RMH and HMC would need to run
longer to have a better mixing results

• we can always adjust step size to have higher acceptance rate, but small step size
normally will lead to higher autocorrelation between samples which leads to slow
convergence
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Discussion

Computational cost for 2D gravity example

Methods1 Computation time for 10000 samples
RMH 71.60s
HMC 215.10s

gpCN
Finding MAP by Adam: 61.89s+Hessian Calculation2: 0.43s

+run chain:38.90s
= Total time cost: 101.22 s

The computation time highly depend on the forward simulation. Although a
properly graphed Tensorflow program has a relatively fast calculation of
gradient (∼ 10ms for the 2D example), calculating gradient at each step of
the chain boosted the time cost for HMC. However, gpCN we only calculate
the Hessian once, therefore it has a better time-efficiency as the number of
samples grow.

1Runinng on a single core of 2,3 GHz Intel Core i5
2Excuting computational graph after first compiling/tracing
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Summary

This work demonstrate the efficiency of using novel Hessian informed MCMC
in geomodeling to obtain a more efficient estimation of the uncertainties.

Future Work
• implementation on 3D model is still under progress
• application on real cases
• detailed comparison with mroe advanced HMC algorithm (e.g. NUTS)
• investigation of identified model covariance, as an additional interesting aspect
• …
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