

Short-term retrospective forecasting of earthquakes based on temporal variations of the b-value of the magnitude-frequency distribution

E. Biondini², P. Gasperini^{2,1}, A. Petruccelli², B. Lolli¹, G. Vannucci¹

¹Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna

²Dipartimento di Fisica e Astronomia, Università di Bologna

emanuele.biondini2@unibo.it

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

Introduction and purposes

Earthquake forecasting has proved to be a perfidiously complex problem for Seismology and will probably take a long time to be resolved. In order to reach the final solution to the problem, it is important that researches to continues and progresses in this field.

- In this work we tried to understand whether b-value temporal variations of the magnitudefrequency relationship can be considered as precursor signals of potentially destructive seismic events.
- The idea of testing the b-value of the magnitude-frequency relationship as a precursor of seismic events has already been proposed in literature (Gulia et al. 2016, GRL, 43, 1001-1008; Smith, W. D., 1986, GJRAS, 86, 815-838;).
- Laboratory experiments seem to show that this parameter is inversely related to the accumulation of differential stress in crustal rocks (Scholz, C. H. 1968, BSSA, 58, 399-415). Specifically, when the parameter decreases, the differential stress increases until the fracture happens.

(†)

(cc)

Introduction and purposes

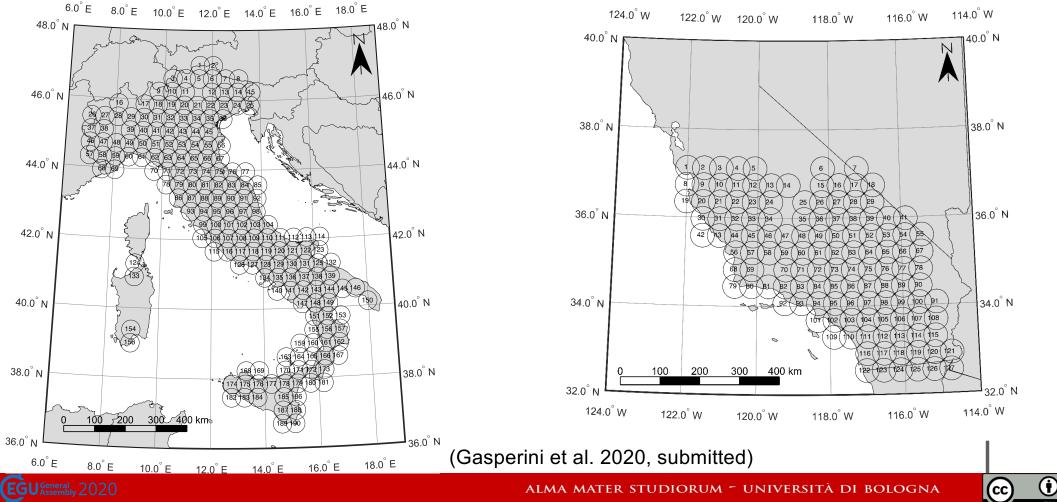
• These observations provide the basis for the definition of an **alarm-based retrospective** forecasting algorithm based on the temporal variations of b-value.

• The **forecasting model** has been tested in **Italy** and **Southern California** and compared with another alarm-based model that uses the occurrence of foreshocks (magnitude range 4.4≤M≤4.6 for Italy and 4.0≤M≤4.2 for southern California) as a precursor (Gasperini et al. 2020, submitted).

• The models are evaluated using **Molchan's test**, which is specific for **assessing the predictive ability** of alarm-based prediction models (Zechar, J. D. et al. 2008, GJI, 172, 715-724).

CC

Setting up the forecasting hypothesis: definition of test space domains


- As **reference area** we consider a regular tessellation of both territories made of partially **overlapping circles (CA)** with fixed radius $R = 30 \ km$
- The centers of the circles are spaced by $D = 30\sqrt{2}$ both in longitude and in latitude

Γ.	Italy		Southern California
•	Initial CA, centered at Lat 47° and Lon 77°	•	Initial CA, centered at Lat 37,5° and Lon -122°
•	Only circles in which at least one Mw≥4.0 earthquake occurred between 1600 and 1959 are selected (from CPTI15 catalog).	•	Only circles in which at least one Mw≥3.5 earthquake occurred between 1932 and 1989 are selected (from SCSN earthquake catalog).
·	190 CAs considered	•	127 CAs considered

Setting up the forecasting hypothesis: definition of test space domains

Seismic catalogues for analysis:

For Italy	For Southern California						
 HOmogenized instRUmental Seismic catalog	 Southern California Seismic Network						
(HORUS) (Gasperini et al., 2013, BSSA, 103/4,	earthquake catalog (Hutton et al., 2010, BSSA,						
2227-2246)	100, 423-446)						
 The forecasting experiment was conducted considering earthquakes from 1995 to 2020 	The forecasting experiment was conducted considering earthquakes from 1990 to 2020						
 We estimated an average magnitude of	 We estimated an average magnitude of						
completeness of the catalogue from 1995 to	completeness of the catalogue from 1990 to						
2020 of Mc=1.7	2020 of Mc=1.5						

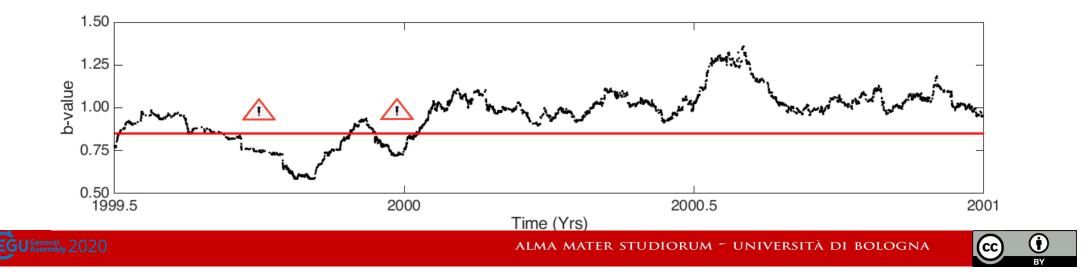
(cc)

 (\mathbf{i})

Setting up the forecasting hypothesis: target events to forecast

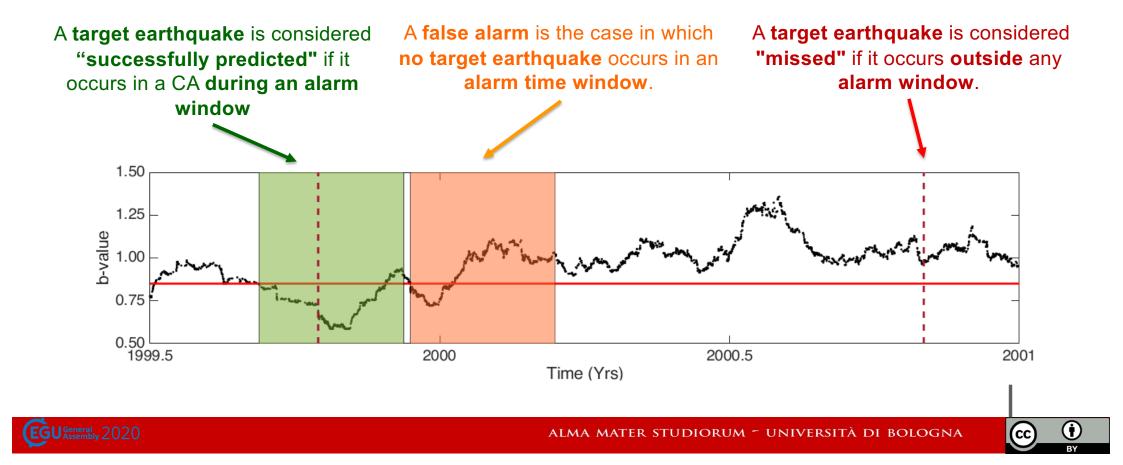
- We checked the **model ability** to predict only the **first shocks (M≥5.0, 5.5, 6.0)** of the sequences by considering a declustered set of **target events**.
- The **declustering** was made by eliminating those events occurred within a spatial distance R=30 km and a time window of six months (0.5 years) after another **target event**, even if they are larger than the **first** main **shock of the sequence**.

CC


Setting up the forecasting hypothesis: definition of alarms

 For each CA the b-value temporal behavior was analyzed considering events windows of 100 events (Marzocchi and Sandri, 2003, AoG, 46, 1271-1282)

$$b = \frac{Log(e)}{\overline{M} - (M_c - \Delta M/2)}$$


 \overline{M} : average magnitude; **Mc**: completeness magnitude; ΔM : magnitude binning (typically 0.1)

 We issue an alarm of duration ∆t within a circular area (CA) of radius R every time the b-value falls below the threshold value (chosen through an optimization procedure) of b=0.85.

Setting up the forecasting hypothesis: definition of "hit" or "miss" target

Retrospective evaluations: Molchan test (Molchan, 1990, 1991)

- □ The experiments are conducted by varying the alarm window ∆t from 1 second to the total duration of the seismic catalogue.
- We computed the **miss rate** ν :

$\boldsymbol{\nu} = (\boldsymbol{N} - \boldsymbol{h})/N$

(where h is the numb. of target events successfully forecasted and N: total n. of target events)

• For each CA we computed the **fraction of time occupied by alarms** τ_c :

$$\boldsymbol{\tau}_{c} = \frac{\boldsymbol{d}_{c}}{\boldsymbol{T}}; \quad \boldsymbol{d}_{c} = \bigcup \Delta t = n\Delta t - \sum \cap t_{s}$$

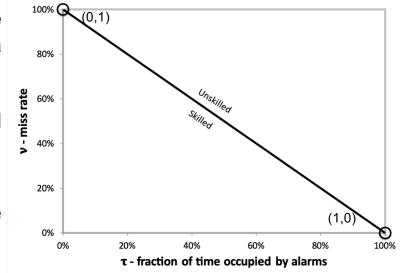
(where **dc** is temporal duration of alarms within one circular area; **T** is total duration of the forecasting experiment and $\cap t_s$ is time intersections between alarm windows)

We computed the overall fraction of space-time occupied by alarms as the average of τ_c of all CAs:

$$\tau_u = \sum_1^M \tau_c / M$$

(where **M** is the n. of Circular Areas CA)

(cc)


Retrospective evaluations: Molchan test

(Molchan, 1990, 1991)

• Following Shebalin et al. (2011) we also computed the so-called **fraction of space-time occupied by alarms** by **weighting** each **alarm** with the long-term seismicity (λ_{ave}) within each CA.

$$\tau_w = \frac{\sum \lambda_{ave} \tau_c}{\sum \lambda_{ave}}$$

- The Molchan error diagram consists of a plot of the miss rate ν as a function of the fractions of spacetime occupied by alarms τ (τ_u or τ_w).
- If $\tau = 0$ then $\nu = 1$ while if $\tau = 1$ then $\nu = 0$. A score on the diagonal line connects the points (0,1) and (1,0) indicates a purely random forecasting method.
- **Confidence limits** of the score can be computed by the binomial distribution : $p = \left(\frac{N}{h}\right) (\tau)^h (1-\tau)^{N-h}$
- If the score curve (τ, ν) is well below the diagonal line, the forecasting model has some forecasting ability.

(†)

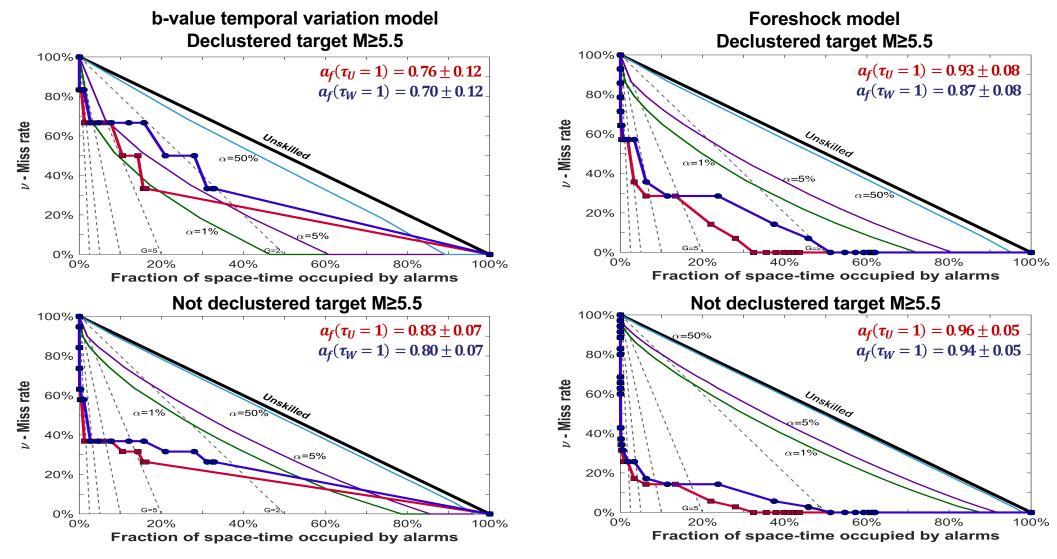
CC

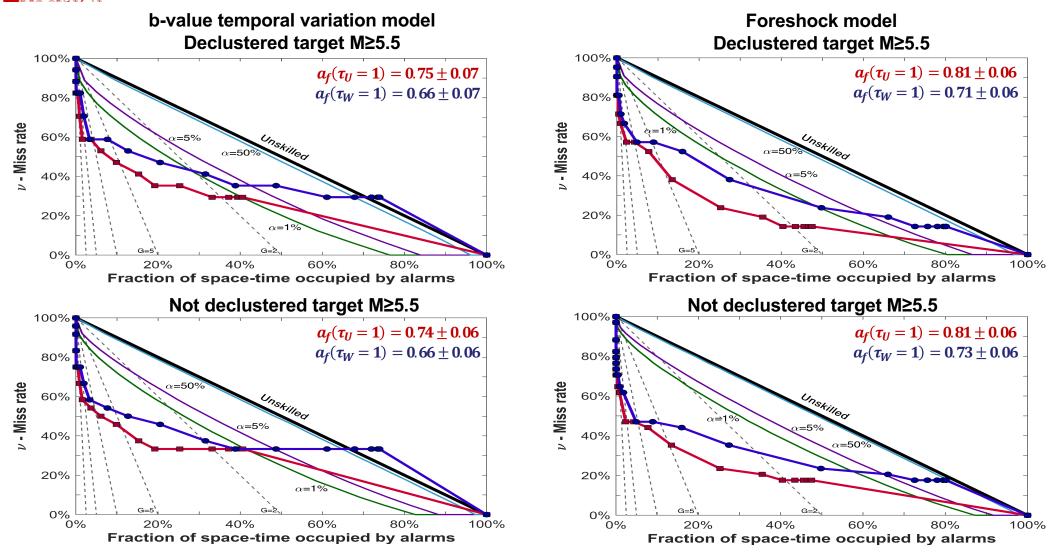
Retrospective evaluations: Area Skill score (Zechar and Jordan, 2008, 2010)

- The Area Skill score (AS) is an index of the performance of an alarm-based forecasting method.
- The AS is calculated as the integral of the success rate function $1 v_f(\tau)$ normalized to the alarm spacetime coverage τ so that its value ranges between 0 and 1:

$$a_f(\tau) = \frac{1}{\tau} \int_0^\tau \left[1 - \nu_f(t) \right] dt$$

- The better the statistics, the better the model's forecasting performance.
- The expected value of the AS score for a purely random method is given by:


$$\langle a_f(\tau) \rangle = \frac{1}{\tau} \int_0^\tau [1 - (1 - t)] dt = \frac{1}{\tau} \frac{\tau^2}{2} = \frac{\tau}{2} = 0.5$$


CC

Molchan error diagrams for Italian test region

(cc) Molchan error diagrams for Southern California test region

 (\mathbf{i})

Outcomes of the retrospective evaluations

- Both models evaluated and compared are characterized by scores well below the diagonal line.
- The Area Skill score (Zechar and Jordan, 2008) methods would confirm that such approaches clearly overperform a purely random method with high or very high confidence.
- We found that the forecasting ability remains high even if results are lower than considering all main shocks.
- Overall we can conclude that **both approaches** have **fair performances**, in particular the forecasting **model based** on the occurrence of **foreshock as a precursor**.

• The results are also similar for the other target magnitudes (M≥5.0, 6.0).


ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

(CC)

Operational application of forecasting models

- \Box For an operational application of forecasting models it is appropriate to determine the alarm Δt for which the models are most efficient in terms of seismic risk mitigation.
- \Box The trend of binomial probability as the alarm time (Δt) changes, expresses the probability that the number of successful forecasts is due to pure chance.
- The lower the probability, the higher the strength of the forecast.
- In general, probabilities are relatively low within a wide range going from a one day to some months.
- We examine here as an example the choice of $\Delta t = 3$ months (0.25 years). This choice, in most cases, results in a 🚡 fairly trade-off between a good efficiency in most cases and a narrow space-time fraction covered by alarms $\tau \approx 1-3\%$, which might even be considered acceptable by the involved population.

ALMA MATER STUDIORUM

Retrospective forecast results considering Δt =3 months

Foreshock model													
	Italy							Southern California					
			Not dec	lustered	_	Not declustered							
Target Magnitude	≥	:5	≥5	25.5 ≥6		:6	≥5		≥5.5		≥6		
Forecasted/total shocks	55/98	56%	26/35	74%	7/10	70%	54/105	51%	18/34	53%	6/13	46%	
Successful/total alarms	115/617	18.60%	72/617	11.70%	30/617	4.90%	286/916	31.22%	120/916	13.10%	34/916	3.71%	
Space-time fraction occupied by the alarms τ_{u} , τ_{w}	0.91%	1.79%	0.91%	1.79%	0.91%	1.79%	2.34%	4.88%	2.34%	4.88%	2.34%	4.88%	
	Declustered						Declustered						
Forecasted/total shocks	11/48	23%	6/14	43%	4/7	57%	17/51	33%	9/21	43%	3/10	30%	
Successful /total alarms	44/617	7.1%	9/617	1.46%	8/617	1.30%	69/916	7.53%	62/916	6.77%	7/916	0.76%	
Space-time fraction occupied by the alarms τ_u , τ_w	0.91%	1.79%	0.91%	1.79%	0.91%	1.79%	2.34%	4.88%	2.34%	4.88%	2.34%	4.88%	

b-value model

	Italy Not declustered						Southern California Not declustered					
Target Magnitude	$\geq 5 \qquad \geq 5.5 \qquad \geq 6$						≥4	5	≥ 5.5		≥6	
Forecasted/total shocks	19/51	37%	12/19	63%	4/6	67%	32/85	38%	11/24	46%	5/9	56%
Successful/total alarms	81/448	18.08%	35/448	7.81%	18/448	4.02%	332/1664	19.95%	190/1664	11.42%	53/1664	3.19%
Space-time fraction occupied by the alarms τ_{u} , τ_{w}	1.25%	2.71%	1.25%	2.71%	1.25%	2.71%	3.66%	7.68%	3.66%	7.68%	3.66%	7.68%
	Declustered					Declustered						
Forecasted/total shocks	5/19	26%	2/6	33%	2/4	50%	12/54	22.22%	7/17	41%	3/8	37.50%
Successful /total alarms	46/448	10.27%	2/448	0.45%	2/448	0.45%	129/1664	7.75%	122/1664	7.33%	4/1664	0.24%
Space-time fraction occupied by the alarms τ_u , τ_w	1.25%	2.71%	1.25%	2.71%	1.25%	2.71%	3.66%	7.68%	3.66%	7.68%	3.66%	7.68%

EGU General Assembly 2020

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

Retrospective forecast results considering $\Delta t = 3$ months for $Mw \ge 5.5$ in Italy

• This table reports the **earthquakes successfully retrospectively forecast** with **success** with both models analyzed:

Year	Month	Day	Lat	Lon	Mw	Epicentral area	Foreshock	b-value
1962	8	21	41.233	14.933	5.7	Irpinia	Success	-
1968	1	15	37.7	13.1	5.7	Valle del Belice	Success	-
1976	5	6	46.25	13.25	6.5	Friuli	Success	-
1979	9	19	42.717	12.95	5.8	Valnerina	Miss	-
1980	11	23	40.8	15.367	6.8	Irpinia-Basilicata	Miss	-
1984	4	29	43.204	12.585	5.6	Umbria settentrionale	Miss	-
1984	5	7	41.666	13.82	5.9	Monti della Meta	Miss	-
1990	5	5	40.65	15.882	5.8	Potentino	Success	-
1997	9	26	43.023	12.891	5.7	Appennino umbro-marchigiano	Success	Success
1998	9	9	40.06	15.949	5.5	Appennino lucano	Miss	Miss
2002	10	31	41.717	14.893	5.7	Molise	Miss	Miss
2009	4	6	42.342	13.38	6.3	Aquilano	Success	Success
2012	5	20	44.896	11.264	6.1	Pianura Emiliana	Miss	Miss
2016	8	24	42.698	13.234	6.2	Monti della Laga	Miss	Miss

Conclusions

- ❑ We have developed a forecasting algorithm for potentially destructive earthquakes (M≥ 5.0, 5.5, 6.0) occurring on the continental territory of Italy and Southern California based on the temporal variations of b-value within each circular area of the tessellation.
- □ The retrospective testing of such hypothesis based on the analysis of the HOmogenized instRUmental Seismic catalog (HORUS) and Southern California Seismic Network earthquake catalog (SCSN) show promising results:
 - Molchan diagram and area skill score criteria indicate a very high performance.
 - With a ∆t = 3 months, retrospectively 70% of the not-declustered target earthquakes in Italy and 50% of the earthquakes in Southern California are forecast with an alarm space-time coverage between 1-3%.
 - The first main shocks of each seismic sequence (**declustered**) are forecasted with rates **25-43%** with larger frequencies for larger magnitudes.

(CC)

Conclusive observations and future developments

- □ The temporal variations of b-value of the magnitude-frequency relationship seems to have good qualities as a precursor of potentially destructive seismic events.
- □ The forecasting experiment based on the occurrence of strong foreshock ,described in detail in Gasperini et. al., 2020 (submitted), provide better results.
- □ Both retrospective forecasting models perform better for Italy.
- □ Given the promising results of this simple experiment, in the near future we will try to optimize the forecasting approach based on temporal variations of b-value considering the percentage variations of the parameter and also the temporal variability of the completeness magnitude.

ALMA MATER STUDIORUM Università di Bologna

Thank you for your attention!

Questions, comments and suggestions are welcome!

Short-term retrospective forecasting of earthquakes based on temporal variations of the b-value of the magnitude-frequency distribution

E. Biondini², P. Gasperini^{2,1}, A. Petruccelli², B. Lolli¹, G. Vannucci¹

¹Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna

²Dipartimento di Fisica e Astronomia, Università di Bologna

Please contact us at <u>emanuele.biondini2@unibo.it</u> for more information on our work

https://www.unibo.it/sitoweb/emanuele.biondini2

www.unibo.it

