
1.   Rational	curve	is	the	best	relationship	for	Changri	Nup	and	Baltoro;	linear	relationship	
is	best	for	Ngozumpa,	Hailuogou	and	Satopanth	(Figure	1).	Rational	curve	(equation	
below)	is	the	best	relationship	for	the	larger	HMA	region	(Figure	2).									 		

	 	dt		=	 																Ts															b	
	 	 	0.558	+	(-0.0198Ts)	

1.  1st	Principal	Components	are	dominated	by	the	positive	influence	of	velocity;														
2nd	Principal	Components	are	dominated	by	the	positive	influence	of	aspect.		

2.  Regressions	show	that	debris	thickness	consistently	has	a	negative	relationship	with	
PC1	(=debris	thickness	increases	as	velocity	decreases),	but	either	a	positive	or	a	
negative	relationship	with	PC2	(=debris	thicker	on	E	or	W	facing	slopes,	respectively).		
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1.	Introduction	

11%	of	glaciers	in	High	Mountain	Asia	(HMA)	are	debris-covered	(Steiner	et	al.,	2018).	
Debris-covered	glaciers	respond	differently	to	clean	ice	glaciers	under	the	same	climatic	
forcing	(Nicholson	and	Benn,	2013).	Beneath	thin	debris,	ablation	is	enhanced,	but	beneath	
debris	>∼2	cm	thick,	ablation	is	inhibited	(Østrem,	1959).	Thus,	the	spatial	variability	of	
supraglacial	debris	thickness	is	significant	in	controlling	the	response	of	debris-covered	
glaciers	to	climate	change.		

1.  Improve	the	mapping	of	debris	thickness	at	both	the	
glacier	and	the	mountain	range	scale	

2.  Quantify	the	controls	on	the	spatial	distribution	of	
supraglacial	debris	thickness	

1.  K-fold	cross	validation	used	to	determine	best	
empirical	relationship	between	mean	melt	season	
surface	temperature	(derived	from	Landsat	8	thermal	
imagery)	and	in	situ	debris	thickness	(collected	from	
literature)	for:	

o  Six	individual	glaciers	(Figure	1)	
o  The	HMA	region,	by	collating	and	

normalising	the	data	(Figure	2)	
2.  Principal	Components	Analysis	(PCA)	of	glaciological	

characteristics	(slope,	aspect,	curvature,	elevation,	
velocity)	for	the	six	glaciers.	PCs	regressed	with	
debris	thickness	(derived	for	each	glacier	using	local	
scale	relationships).		

•  Use	of	a	rational	curve	or	a	linear	relationship	improves	estimations	of	spatial	variability	of	supraglacial	debris	thickness,	on	both	a	glacier	and	
mountain	range	scale,	in	comparison	to	relationships	used	in	studies	by	Mihalcea	et	al.	(2008)	and	Kraaijenbrink	et	al.	(2017).	

•  Velocity	and	aspect	statistically	proven	to	be	important	controls	on	the	spatial	distribution	of	supraglacial	debris	thickness.	
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Figure	1:	Surface	temperature	(°C)	(x	axis)/debris	thickness	(cm)	(y	axis)	relationships	for	six	glaciers	(rational	curve,	
linear,	Mihalcea	et	al.	(2008)	relationship,	Kraaijenbrink	et	al.	(2017)	relationship).	Solid	line	=	relationship	with	
smallest	median	error.	

Figure	2:	Surface	temperature	(°C)	(x	axis)/debris	thickness	(cm)	(y	axis)	
relationship	for	all	collated	data	(rational	curve,	linear,	Mihalcea	et	al.	(2008)	
relationship,	Kraaijenbrink	et	al.	(2017)	relationship).	Solid	line	=	relationship	with	
smallest	median	error.	
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