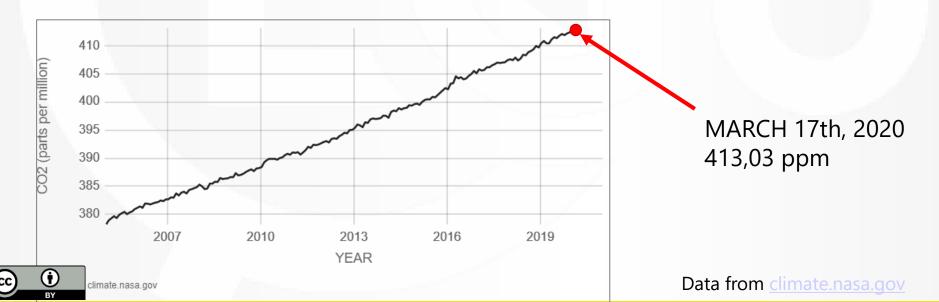
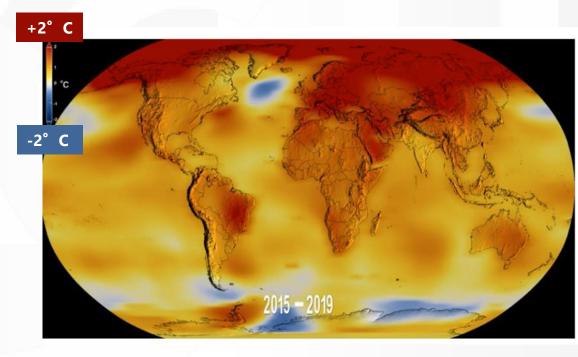

Vitamin C as a green high-performance CO₂ scrubber


<u>Linda Pastero</u> Alessandra Marengo Davide Bernasconi Guido Scarafia Alessandro Pavese

The relentless rise of carbon dioxide related to the fossil-fuel burning



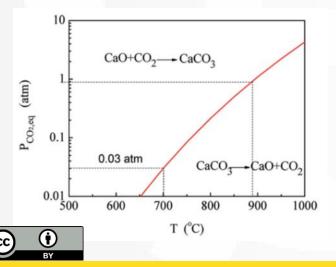
CO₂ is the greenhouse gas most commonly produced by human activities and it is **responsible** for 64% of man-made global warming.

CO_2 rise effects:

- Global Temperature Rise
- Oceans Warming
- Shrinking Ice Sheets
- Glacial Retreat
- Decreased Snow Cover
- Sea Level Rise
- Declining Arctic Sea Ice
- Extreme Events
- Ocean Acidification

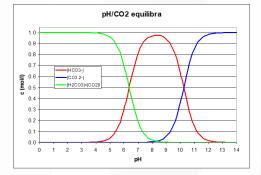
A PORTFOLIO OF SOLUTIONS is needed, among these mineral trapping → mainly involves carbonates

$MOH + CO_2 \rightarrow M(HCO_3)$ $MO + CO_2 \rightarrow MCO_3$


$k_{sp}^{Cc} = 3.36 \times 10^{-9}$ $k_{sp}^{Arag} = 6 \times 10^{-9}$

S/V reactions

 $CaCO_3 \Leftrightarrow Ca^{2+} + CO_3^{2-}$


 $\text{CO}_3^{2-} \Leftrightarrow [\text{CO}_2]_{\text{ad}} + \text{O}^{2-}$

 $[CO_2]_{ad} \Leftrightarrow CO_2$

L/V reactions

 $CO_2(g) \Leftrightarrow CO_2(I)$

 CO_2 (I) + H₂O (I) \Leftrightarrow H₂CO₃ (I)

 $H_2CO_3 + H_2O \Leftrightarrow H_3O+ + HCO^{3-} \qquad pK_{\alpha 1}(25^{\circ} C)=6.37$

 $\mathsf{HCO}^{3\text{-}} + \mathsf{H}_2\mathsf{O} \Leftrightarrow \mathsf{H}_3\mathsf{O} + + \mathsf{CO}_3^{2\text{-}} \qquad \mathsf{pK}_{\alpha 2} \text{ (25° C)} = 10.25$

 $\begin{array}{ccccc} \mathsf{H}_2\mathsf{O} & \mathsf{H}_2\mathsf{O} & \mathsf{H}_2\mathsf{O} & \mathsf{Ca}^{2+} \\ \mathsf{CO}_2(\mathsf{g}) \ \Leftrightarrow \ \mathsf{CO}_2(\mathsf{I}) & \Leftrightarrow & \mathsf{H}_2\mathsf{CO}_3 & \Leftrightarrow & \mathsf{HCO}_3^- & \Leftrightarrow & \mathsf{CO}_3^{2-} & \Leftrightarrow & \mathsf{CaCO}_3 \downarrow \\ & & & & \mathsf{H}_3\mathsf{O}^+ & & \mathsf{H}_3\mathsf{O}^+ \end{array}$

Other methods:

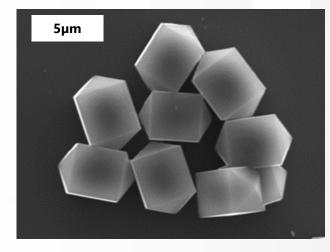
C (IV) to C (III) reduction

- **Transition-metal complexes** are mandatory to direct the reactivity of the $CO_2^{\bullet-}$ radical anion towards a specific reaction product. Electrochemical parameters must be properly optimized.
- Photo-electrochemical and catalytical reduction of CO₂ are associated to a significant energy drawback.
- Reductive coupling of CO₂ to form oxalate has been accomplished by electrochemical reactions involving transition metal (Hg, Pb, Cu, Pd, Ag) complexes or anion radicals of aromatic hydrocarbons, esters, and nitriles

We proposed the C(IV) to C(III) reduction

via

Vitamin C



and carbon capture in stable calcium oxalates

 $2\mathbf{CO}_2 + 2\mathbf{H}^+ + 2\mathbf{e}^- \rightarrow \mathbf{H}_2\mathbf{C}_2\mathbf{O}_4$ **AA** \rightarrow **DHA**' + $\mathbf{H}^+ + \mathbf{e}^-$

 $Ca(ASC)_2 + 2CO_2 + 2H^+ + 2e^- \rightarrow CaC_2O_4 + 2DHA + 2H^+ + 2e^-$

 $k_{sp}^{COM} = 2.32 \times 10^{-9}$

facile, green and direct precipitation of calcium oxalates by carbon reduction using Vitamin C

Oxalate VS Carbonate

 $CO_2 \rightarrow C_2O_4^{2-}$

Effective method for the CO_2 capture in a stable crystalline phase The reaction has been validated

The capture efficiency is doubled with respect to carbonation

oxalatecarbonate $CO_2/C_2O_4^{2-} = 2:1$ $CO_2/CO_3 = 1:1$

• If dissolved, the CO₂ is not directly returned to the environment

Process behavior

The process happens following two steps:

1. The **<u>red-ox</u>** (reduction of CO_2 in $C_2O_4^{=}$ in the presence of Vitamin C).

This is the <u>rate determining step</u> of the reaction \rightarrow it must be promoted to reduce the induction time of the system. The variables playing a role here are mainly

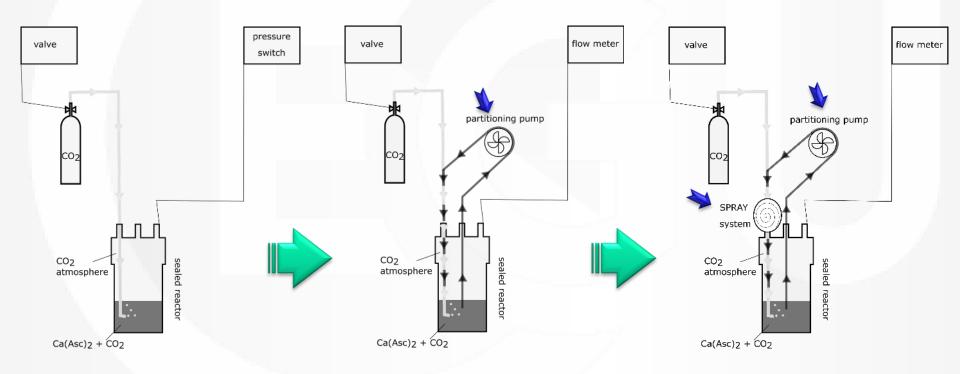
- Competitors (O₂ for instance)
- Temperature
- *pH*
- Reactive surface (aerosol)

2. The **<u>nucleation</u>** of calcium oxalate.

Very low $k_{sp} \rightarrow$ the nucleation is easily obtained

Reagents and products

Reducing agent: <u>Vitamin C</u>	Precipitate: <u>Ca-oxalate</u> mono/dihydrate
<u>Not harmful</u>	<u>Not harmful</u>
Easy to obtain (natural -from fruits and vegetables-; synthetic - from D-glucose-)	Stable solid phase, nearly negligible solubility
Reaction products (DHA, dehydroascorbic acid and following degradation cascade) <u>not harmful</u>	<u>Inactive</u> to the red-ox if left into the reaction vessel
<u>Replaceable</u> with other natural reducing agents potentially recovered from waste (circular approach)	Its degradation does not produce CO_2 (at temperature lower than 200° C)



Experimental setups

Many setups have been implemented:

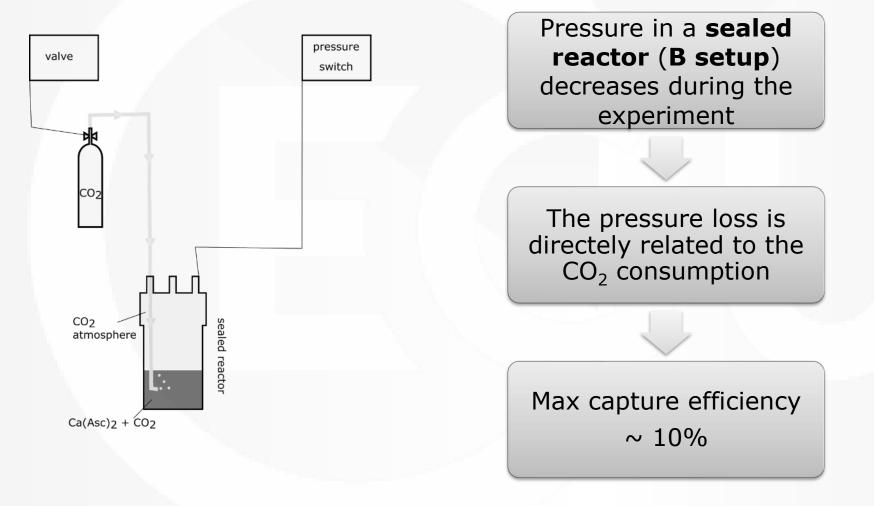
- Air **A** setup
- CO₂ saturated atmosphere (from (NH₄)CO₃ thermal decomposition) G setup

- Bubbling CO₂ **B** setup
- Bubbling CO₂ + microfluidic

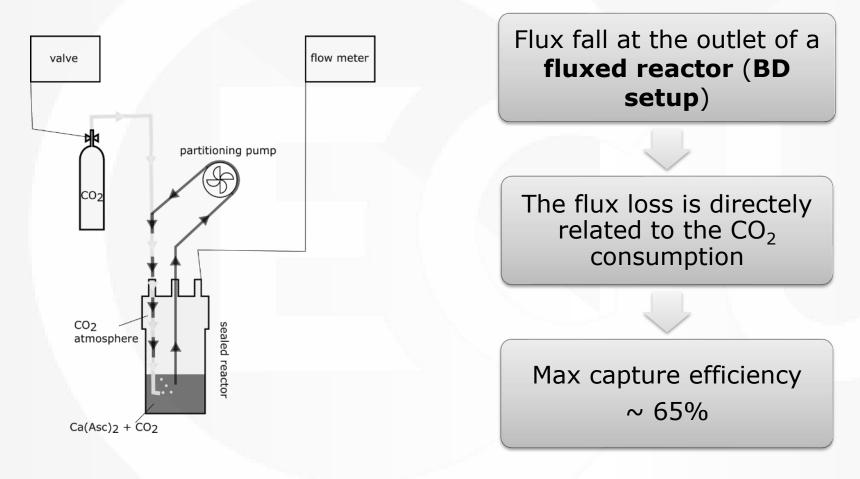
reactors – **BD** setup

... optimizing the capture system...

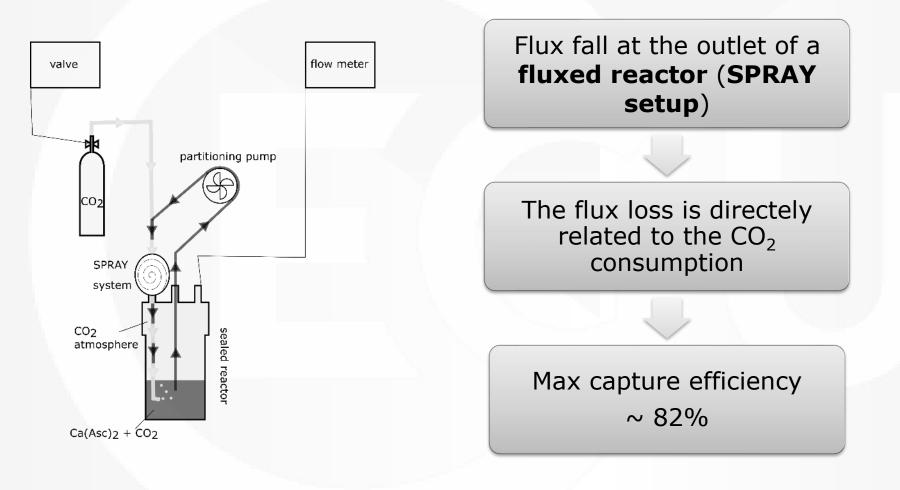
Many variables have been tested and optimized on the B setup and then transferred to the more complexes BD and SPRAY setups:


- Stoichiometry (pH)
- Temperature
- Oxygen concentration
- Physical triggers (470 nm blue light)
- Solution «aging» time

Fluid fluxes have been tested directely on the BD and SPRAY setups.



...monitoring the CO₂ into the B reactor



...monitoring the CO₂ into the BD reactor

...monitoring the CO₂ into the SPRAY reactor

A quantitative evaluation of the CO₂ trapping by carbon reduction via Vitamin C

Setup	Setup BD		Flux rate mL/min	Yield after 20 h (%)	
				Mix & work	Aging
	Soichiometric solution (pH5.5)	no O ₂	/	2	/
D	Soichiometric solution (pH5.5)	Atmospheric O ₂	/	3.75	6.25
B	AA excess (pH5.3)	Atmospheric O ₂	/	5.75	9.5
	Ca(OH)2 excess (pH5.8)	Atmospheric O ₂	/	4.5	5
	Soichiometric solution (pH5.5)	H ₂ O ₂ @ variable concentration	/	3-6.5	/
BD	AA excess (pH5.3)	Atmospheric O ₂	1.25	/	60.5
SPRAY	AA excess (pH5.3)	Atmospheric O ₂	1.25	/	82

- A new green and easy to handle method for CCS has been proposed
- The reaction has been validated
- No harmful reagents and products involved
- The maximum yield (CO₂ captured) obtained till now \rightarrow 82%
- The reaction yield depends on the reaction surface and on:
 - presence of O₂
 - mixing rate,

Summarizing...

- stoichiometry,
- pH
- temperature play a minor role on the performance of the system.
- For a circular approach, the reducing agent could be substituted by vitamin
 blends from the organic waste leachate

Thank you for your attention!

Crystals Special Issue "Crystal Growth in Environmental Protection, Remediation, and Health" Guest Editor Dr. Linda Pastero

Submission deadline: **30 June 2020**

