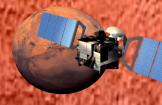

# **MARS EXPRESS**



## **EGU 2020 Virtual Meeting**

# EGU2020-20093: New search capabilities based on observational geometry for Mars Express data in the ESA's Planetary Science Archive

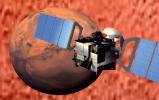

Emmanuel Grotheer (1), Nicolas Manaud (2), Mark Bentley (1), Sebastian Besse (1), Daniela Coia (1), Marc Costa (1), Guido De Marchi (2), Diego Fraga (1), Bjoern Grieger (1), Dave Heather (1), Tanya Lim (1), Michel Breitfellner (1), Alejandro Cardesin-Moinelo (1), Manuel Castillo (1), Julia Marin-Yaseli (1), Patrick Martin (1), Donald Merritt (1), Eleni Ravanis (1), Dmitrij Titov (3), Martin Voelker (1), Bruno Merin (1), Christophe Arviset (1), Isa Barbarisi (1), Silvia De Castro (1), Ruben Docasal (1), Angel Montero (1), Jose Osinde Lopez (1), Carlos Rios (1), and Jaime Saiz (1)

(1) European Space Agency (ESAC site), Spain; (2) SpaceFrog Design, Toulouse, France; (3) European Space Agency (ESTEC site), Netherlands (egrotheer@sciops.esa.int)

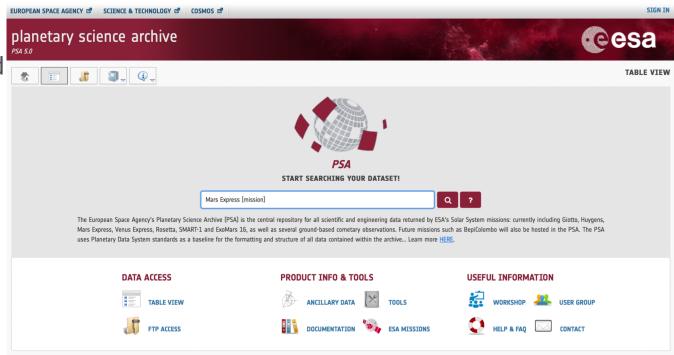
4 May 2020



#### Introduction



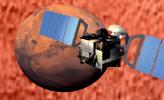

 The European Space Agency's (ESA) Planetary Science Archive (PSA) can be accessed at:


http://psa.esa.int/

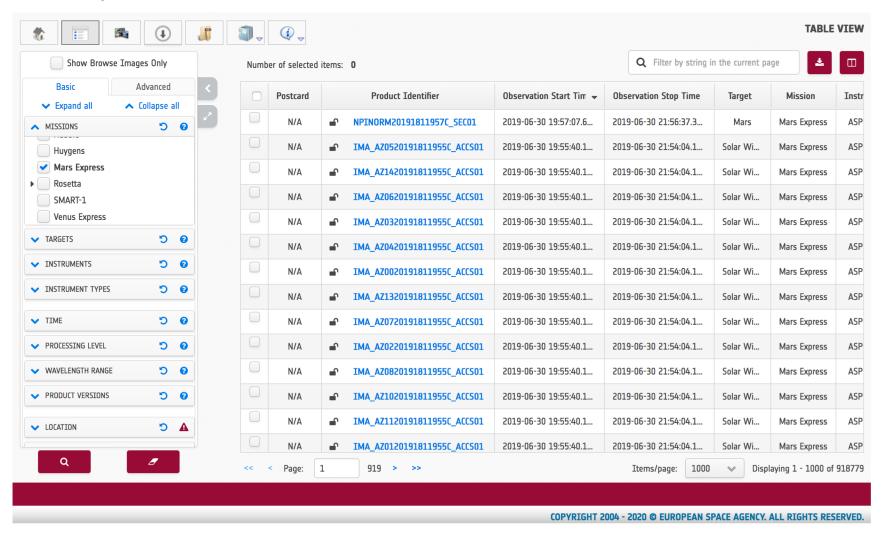
- The 918K+ Mars Express (MEX) data products stored in the PSA cover observations from 19 February 2003 through 30 June 2019 (and growing).
- That's 16 years of public data (MEX arrived at Mars Christmas 2003, but there were earlier instrument check-out observations and even some on-ground calibration) and the mission is still on-going and delivering data (with a proprietary period).

#### **New PSA User Interface (UI)**

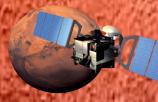



- The re-designed UI (version 5.0) was launched on 16 Jan 2017<sup>1</sup>.
- Starts with a home page, from which one could access the FTP and new Table View.

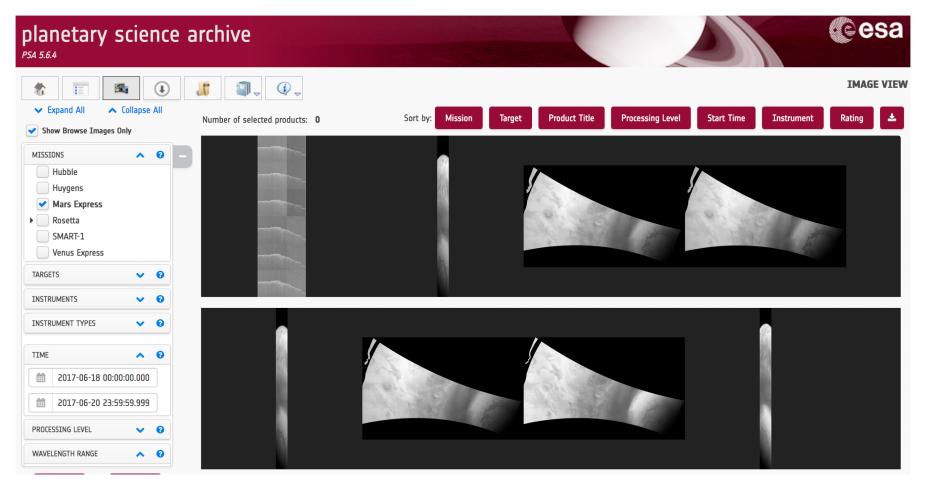



Includes both PDS3 and PDS4 standard formatted data (previously only PDS3 was available, the newer missions from ExoMars onward use PDS4).

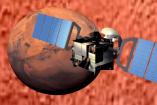
[1] Besse, S., Vallat, C., Barthelemy, M., Coia, D., Costa, M., De Marchi, G., Fraga, D., Grotheer, E., Heather, D., Lim, T., Martinez, S., Arviset, C., Barbarisi, I., Docosal, R., Macfarlane, A., Rios, C., Saiz, J., and Vallejo, F.: ESA's Planetary Science Archive: Preserve and present reliable scientific data sets, Planetary and Space Science, Vol. 150, pp. 131-140, 2018.


#### New PSA UI (2)

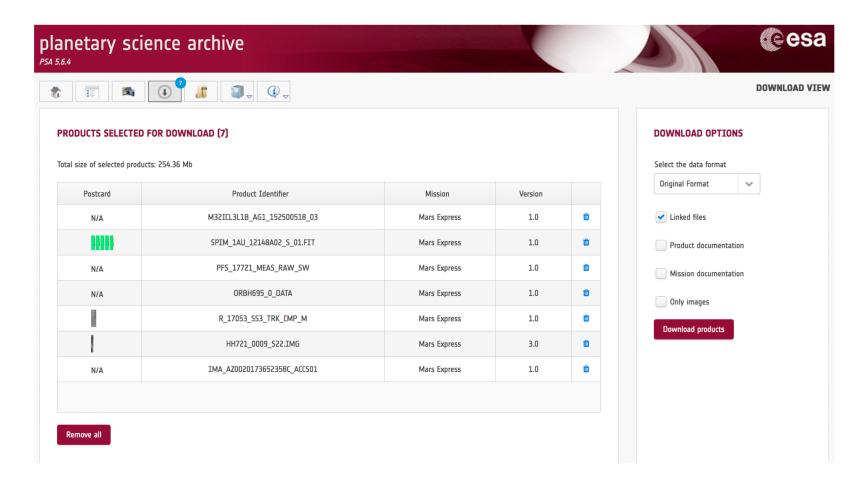



An example of the Table View.

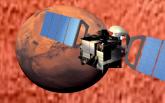



#### **Image View**

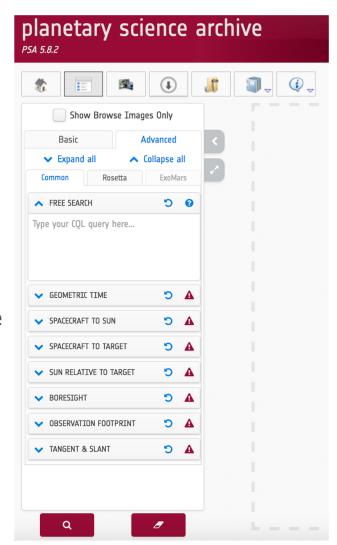



- With UI version 5.5, the Image View was released.
- This new View allows users to look through the data via the browse products (aka postcards).

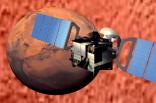



#### **Data Download Manager**



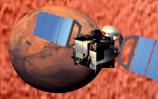

To gather assorted data products for a single download later, and decide what kind of ancillary information to include.




#### **Geometrical searches**

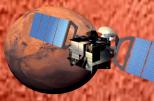


- Development of a new Map View is ongoing.
- As a first step, a common approach for calculating geometrical parameters was applied via the Geogen tool.
- These 47 new parameters can be accessed in the Table View's "Advanced" tab. More information can be found in the user manual's "Geogen parameters" section (see link below)



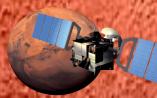

## Geogen parameters (1/7)




| NAME                         | DESCRIPTION                                                          | EXAMPLE                                   |
|------------------------------|----------------------------------------------------------------------|-------------------------------------------|
| geogen_center_latitude       | Latitude of the observation footprint center point.                  | geogen_center_latitude = -39.45           |
| geogen_center_longitude      | Longitude of the observation footprint center point.                 | geogen_center_longitude = -46.03          |
| geogen_westernmost_longitude | Westernmost observation longitude of the footprint.                  | geogen_westernmost_longitude BETWEEN      |
|                              |                                                                      | -17.93 AND 120.71                         |
| geogen_easternmost_longitude | Easternmost observation longitude of the footprint.                  | geogen_easternmost_longitude = -174.38    |
| geogen_minimum_latitude      | Minimum observation latitude of the footprint.                       | geogen_minimum_latitude > -29.49          |
| geogen_maximum_latitude      | Maximum observation latitude of the footprint.                       | geogen_maximum_latitude = -52.44          |
| geogen_local_true_solar_time | Local solar time for the surface point, evaluated at the reference   | geogen_local_true_solar_time = '00:16:38' |
|                              | time.                                                                |                                           |
|                              | The local solar time is the angle between the planetocentric         |                                           |
|                              | longitude of the Sun, as viewed from the center of the target body,  |                                           |
|                              | and the planetocentric longitude of the surface point, expressed on  |                                           |
|                              | a "24 hour" clock.                                                   |                                           |
| geogen_solar_longitude       | Planetocentric longitude (Ls) of the sun for the target body at the  | geogen_solar_longitude = 4.52             |
|                              | reference time.                                                      |                                           |
|                              | The planetocentric longitude is the angle between the body-sun       |                                           |
|                              | vector at the time of interest and the body-sun vector at the vernal |                                           |
|                              | equinox.                                                             |                                           |

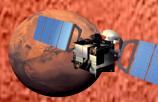
## **Geogen parameters (2/7)**




| geogen_sub_solar_latitude        | Latitude of the sub-solar point on the target body at the reference  | geogen_sub_solar_latitude = -18.57        |
|----------------------------------|----------------------------------------------------------------------|-------------------------------------------|
|                                  | time.                                                                |                                           |
|                                  | The sub-solar point is the point on a body's reference surface       |                                           |
|                                  | where a line from the body center to the sun center intersects that  |                                           |
|                                  | surface.                                                             |                                           |
| geogen_sub_solar_longitude       | Longitude of the sub-solar point on the target body at the           | geogen_sub_solar_longitude = 24.23        |
|                                  | reference time.                                                      |                                           |
|                                  | The sub-solar point is the point on a body's reference surface       |                                           |
|                                  | where a line from the body center to the sun center intersects that  |                                           |
|                                  | surface.                                                             |                                           |
| geogen_solar_distance            | Distance from the center of the sun to the center of the target      | geogen_solar_distance < 206666750.311     |
|                                  | body at the reference time.                                          |                                           |
| geogen_spacecraft_solar_distance | Distance from the spacecraft to the center of the sun at the         | geogen_spacecraft_solar_distance =        |
|                                  | reference time.                                                      | 207353078.157                             |
| geogen_spacecraft_altitude       | Distance from the spacecraft to the sub-spacecraft point on the      | geogen_spacecraft_altitude = 326.891      |
|                                  | target body at the reference time.                                   |                                           |
| geogen_target_center_distance    | Distance from the spacecraft to the center of the target body at the | geogen_target_center_distance = 1334.922  |
|                                  | reference time.                                                      |                                           |
| geogen_sub_spacecraft_latitude   | Latitude of the sub-spacecraft point on the target body at the       | geogen_sub_spacecraft_latitude = -73.40   |
|                                  | reference time.                                                      |                                           |
| geogen_sub_spacecraft_longitude  | Longitude of the sub-spacecraft point on the target body at the      | geogen_sub_spacecraft_longitude = -104.53 |
|                                  | reference time.                                                      |                                           |
|                                  | Solar zenith angle at the sub-spacecraft point on the target body    |                                           |
|                                  | surface at the reference time.                                       |                                           |

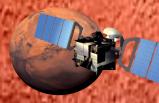
## **Geogen parameters (3/7)**




| geogen_sub_spacecraft_solar_zenith_angle | The solar zenith angle is the angle subtended between the            | geogen_sub_spacecraft_solar_zenith_angle = |
|------------------------------------------|----------------------------------------------------------------------|--------------------------------------------|
|                                          | direction towards the Sun and the local normal at the surface.       | 29.4279                                    |
| geogen_target_right_ascension            | Right ascension of the position vector of the target body center as  | geogen_target_right_ascension < 0.0602     |
|                                          | seen from the spacecraft in the Earth mean equator and equinox       |                                            |
|                                          | frame (J2000).                                                       |                                            |
| geogen_target_declination                | Declination of the position vector of the target body center as seen | geogen_target_declination = -17.0544       |
|                                          | from the spacecraft in the Earth mean equator and equinox frame      |                                            |
|                                          | (J2000).                                                             |                                            |
| geogen_sun_right_ascension               | Right ascension of the position vector of the Sun as seen from the   | geogen_sun_right_ascension = 21.0951       |
|                                          | spacecraft in the Earth mean equator and equinox frame (J2000).      |                                            |
| geogen_sun_declination                   | Declination of the position vector of the Sun as seen from the       | geogen_sun_declination = 53.6828           |
|                                          | spacecraft in the Earth mean equator and equinox frame (J2000).      |                                            |
| geogen_x_sc_sun_position                 | X component of the position vector from spacecraft to Sun,           | geogen_x_sc_sun_position = -208028688.083  |
|                                          | expressed in J2000 coordinates, and corrected for light time and     |                                            |
|                                          | stellar aberration, evaluated at the reference time.                 |                                            |
| geogen_y_sc_sun_position                 | Y component of the position vector from spacecraft to Sun,           | geogen_y_sc_sun_position = -214032850.577  |
|                                          | expressed in J2000 coordinates, and corrected for light time and     |                                            |
|                                          | stellar aberration, evaluated at the reference time.                 |                                            |
| geogen_z_sc_sun_position                 | Z component of the position vector from spacecraft to Sun,           | geogen_z_sc_sun_position = -77268319.714   |
|                                          | expressed in J2000 coordinates, and corrected for light time and     |                                            |
|                                          | stellar aberration, evaluated at the reference time.                 |                                            |

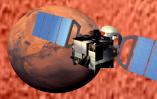
## **Geogen parameters (4/7)**




| geogen_x_sc_sun_velocity    | X component of the velocity vector of Sun relative to the           | geogen_x_sc_sun_velocity = -27.81174    |
|-----------------------------|---------------------------------------------------------------------|-----------------------------------------|
|                             | spacecraft, expressed in J2000 coordinates, and corrected for light |                                         |
|                             | time and stellar aberration, evaluated at the reference time.       |                                         |
| geogen_y_sc_sun_velocity    | Y component of the velocity vector of Sun relative to the           | geogen_y_sc_sun_velocity = -23.15454    |
|                             | spacecraft, expressed in J2000 coordinates, and corrected for light |                                         |
|                             | time and stellar aberration, evaluated at the reference time.       |                                         |
| geogen_z_sc_sun_velocity    | Z component of the velocity vector of Sun relative to the           | geogen_z_sc_sun_velocity = -13.49878    |
|                             | spacecraft, expressed in J2000 coordinates, and corrected for light |                                         |
|                             | time and stellar aberration, evaluated at the reference time.       |                                         |
| geogen_x_sc_target_position | X component of the position vector from the spacecraft to target    | geogen_x_sc_target_position = -3091.489 |
|                             | body center, expressed in J2000 coordinates, and corrected for      |                                         |
|                             | light time and stellar aberration, evaluated at the reference time. |                                         |
| geogen_y_sc_target_position | Y component of the position vector from the spacecraft to target    | geogen_y_sc_target_position = -1734.554 |
|                             | body center expressed in J2000 coordinates, and corrected for light |                                         |
|                             | time and stellar aberration, evaluated at the reference time.       |                                         |
| geogen_z_sc_target_position | Z component of the position vector from the spacecraft to target    | geogen_z_sc_target_position = -745.707  |
|                             | body center expressed in J2000 coordinates, and corrected for light |                                         |
|                             | time and stellar aberration, evaluated at the reference time.       |                                         |

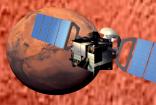
## **Geogen parameters (5/7)**




| geogen_x_sc_target_velocity | X component of the velocity vector of the target body center      | geogen_x_sc_target_velocity = 1.01425     |
|-----------------------------|-------------------------------------------------------------------|-------------------------------------------|
|                             | relative to the spacecraft, expressed in J2000 coordinates, and   |                                           |
|                             | corrected for light time and stellar aberration, evaluated at the |                                           |
|                             | reference time.                                                   |                                           |
| geogen_y_sc_target_velocity | Y component of the velocity vector of the target body center      | geogen_y_sc_target_velocity = -2.35642    |
|                             | relative to the spacecraft, expressed in J2000 coordinates, and   |                                           |
|                             | corrected for light time and stellar aberration, evaluated at the |                                           |
|                             | reference time.                                                   |                                           |
| geogen_z_sc_target_velocity | Z component of the velocity vector of the target body center      | geogen_z_sc_target_velocity = -3.36229    |
|                             | relative to the spacecraft, expressed in J2000 coordinates, and   |                                           |
|                             | corrected for light time and stellar aberration, evaluated at the |                                           |
|                             | reference time.                                                   |                                           |
| geogen_min_incidence_angle  | Minimum incidence angle.                                          | geogen_min_incidence_angle BETWEEN 1.6275 |
|                             | The incidence angle is the angle between the local vertical at a  | and 5.6275                                |
|                             | given surface point and the vector from the surface point to the  |                                           |
|                             | sun.                                                              |                                           |
| geogen_max_incidence_angle  | Maximum incidence angle.                                          | geogen_max_incidence_angle BETWEEN 3.5575 |
|                             | The incidence angle is the angle between the local vertical at a  | and 7.2354                                |
|                             | given surface point and the vector from that the surface point to |                                           |
|                             | the sun.                                                          |                                           |
|                             |                                                                   |                                           |

## **Geogen parameters (6/7)**



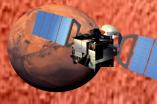

| geogen_min_emission_angle | Minimum emission angle.                                           | geogen_min_emission_angle = 3.2342  |
|---------------------------|-------------------------------------------------------------------|-------------------------------------|
|                           | The emission angle is the angle between the surface normal at a   |                                     |
|                           | given surface point and the vector from the surface point to the  |                                     |
|                           | spacecraft.                                                       |                                     |
| geogen_max_emission_angle | Maximum emission angle.                                           | geogen_max_emission_angle = 15.5885 |
|                           | The emission angle is the angle between the surface normal at a   |                                     |
|                           | given surface point and the vector from the surface point to the  |                                     |
|                           | spacecraft.                                                       |                                     |
| geogen_min_phase_angle    | Minimum phase angle.                                              | geogen_min_phase_angle > 0.0827     |
|                           | The phase angle is the angle between the vectors from the surface |                                     |
|                           | point to the spacecraft and from the surface point to the Sun.    |                                     |
| geogen_max_phase_angle    | Maximum phase angle.                                              | geogen_max_phase_angle < 3.5121     |
|                           | The phase angle is the angle between the vectors from the surface |                                     |
|                           | point to the spacecraft and from the surface point to the Sun.    |                                     |
| geogen_min_slant_distance | Minimum slant distance.                                           | geogen_min_slant_distance = 298.751 |
|                           | The slant distance is the distance from the spacecraft to the     |                                     |
|                           | nearest point on the detector line-of-sight to the target body    |                                     |
|                           | surface.                                                          |                                     |
| geogen_max_slant_distance | Maximum slant distance.                                           | geogen_max_slant_distance = 493.096 |
|                           | The slant distance is the distance from the spacecraft to the     |                                     |
|                           | nearest point on the detector line-of-sight to the target body    |                                     |
|                           | surface.                                                          |                                     |
|                           |                                                                   |                                     |

## **Geogen parameters (7/7)**



| geogen_min_tangent_altitude       | Minimum tangent altitude.                                           | geogen_min_tangent_altitude = 5.174         |
|-----------------------------------|---------------------------------------------------------------------|---------------------------------------------|
|                                   | The tangent altitude is the distance from the target body surface   |                                             |
|                                   | nearest point to the detector line-of-sight.                        |                                             |
| geogen_max_tangent_altitude       | Maximum tangent altitude.                                           | geogen_max_tangent_altitude = 113.808       |
|                                   | The tangent altitude is the distance from the target body surface   |                                             |
|                                   | nearest point to the detector line-of-sight.                        |                                             |
| geogen_boresight_right_ascension  | Right ascension of the detector boresight vector, in the Earth mean | geogen_boresight_right_ascension = 41.4073  |
|                                   | equator and equinox frame (J2000), at the reference time.           |                                             |
| geogen_boresight_declination      | Declination of the detector boresight vector, in the Earth mean     | geogen_boresight_declination = -39.2410     |
|                                   | equator and equinox frame (J2000), at the reference time.           |                                             |
| geogen_boresight_target_angle     | The separation angle between the detector line-of-sight (boresight) | geogen_boresight_target_angle = 2.9161      |
|                                   | and the target body center as seen from the spacecraft, at the      |                                             |
|                                   | reference time.                                                     |                                             |
| geogen_boresight_solar_elongation | Separation angle between the detector line-of-sight and the         | geogen_boresight_solar_elongation = 97.0743 |
|                                   | position vector of the Sun as seen from the spacecraft, at the      |                                             |
|                                   | reference time.                                                     |                                             |
|                                   |                                                                     |                                             |

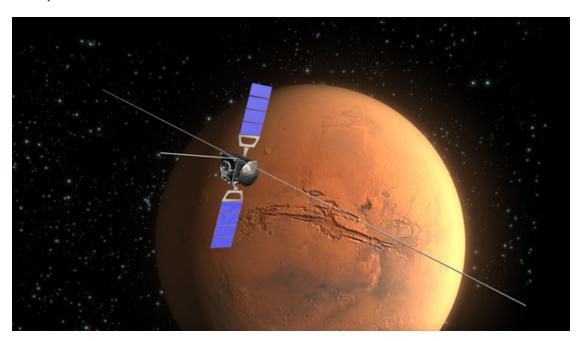
#### New datasets by the PI teams




Over the last 5 years, additional datasets beyond the nominal ones have been delivered by the PI teams (not counting new versions/recalibrations); this includes the following:

- ASPERA solar wind moments (also for VEX)
- HRSC Phobos data (including DTMs and mosaics)
- MARSIS AIS electron densities and magnetic field strengths

The Visual Monitoring Camera (VMC) has been repurposed as a scientific instrument as well, and the first 2 full datasets (raw and calibrated data) are currently undergoing review and will be published later in 2020.


#### **Acknowledgements**



**Thank you** to all the teams for your deliveries over the past 16 years, and thanks in advance for the many deliveries yet to be made in the future.

As with most endeavours in planetary science, this is a <u>team</u> effort.

Let's hope together we can reach 20+ years of MEX; and maybe exceed 1 million MEX data products in the archive.

