

Enviro-HIRLAM modeling of atmospheric aerosols and pollution transport and feedbacks: North-West Russia and Northern Europe

Nerobelov Georgy M. ^{1,2*}, M.S. Sedeeva^{1,3}, A.G. Mahura⁴, R.B. Nuterman⁵, S.P. Smyshlyaev⁶

¹Institution of Russian Academy of Sciences Saint-Petersburg Scientific-Research Centre for Ecological Safety RAS
 ²Faculty of Physics, Saint-Petersburg State University (SPBU), Saint-Petersburg, Russia
 ³Institute of Earth Sciences, Saint-Petersburg State University (SPBU), Saint-Petersburg, Russia
 ⁴Institute for Atmospheric and Earth System Research (INAR) / Physics, University of Helsinki (UHEL), Helsinki, Finland
 ⁵Niels Bohr Institute, University of Copenhagen (NBI UCPH), Copenhagen, Denmark
 ⁶Department of Meteorological Forecasting, Russian State Hydrometeorological University (RSHU), Saint-Petersburg, Russia

MOTIVATION AND AIM

Motivation

- Increase in anthropogenic pollution (aerosols and gases) due to growing urbanization level and natural pollution (volcanic eruptions, forest fires, sand storms, etc.);
- Gases (e.g. SO₂) and aerosols (e.g. sulfates) cause detrimental effect on living organisms;
- Aerosols can cause changes in meteorological parameters by influencing electromagnetic radiation.

Aim

• To evaluate the aerosol effect on several meteorological parameters and environmental pollution by sulfur containing compounds using Enviro-HIRLAM online-integrated modelling system.

Example of gaseous pollutants source (Pechenganikel` mining company, Kola Peninsula, Russia)

Sources of anthropogenic and natural aerosols



ENVIRO-HIRLAM MODELLING SYSTEM: SETUP AND CASE STUDIES

Period of research

•August 2010 (G. Nerobelov et al., 2018) •January 2010

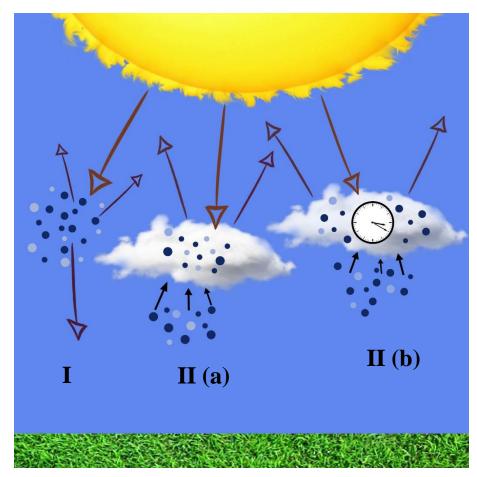
Domain of interest

Orig.: A. Baklanov et al., 2017

Model scheme (center) and setup options (right)

Enviro-HIRLAM

- Model grid 568x510;
- Horizontal res. 0.15°;
- Vertical res. 40 hybrid levels;
- Time step 360 s;
- Forecast length 3 and 6 h;
 Assim. period 6 h;
- **4 model runs**—without aerosol effect included (**CTRL**), with direct (**DAE**), indirect (**IDAE**) and combined (**COMB**) effect.

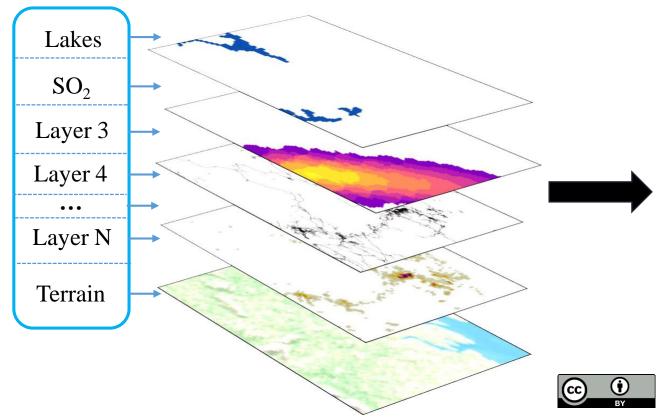

ENVIRO-HIRLAM MODELLING SYSTEM: AEROSOL EFFECTS

Direct aerosol effect (I)

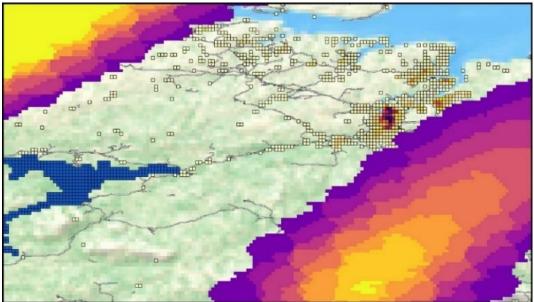
• Including the temporal variation of aerosol characteristics into short-wave and long-wave electromagnetic radiation schemes

Indirect aerosol effect (IIa & IIb)

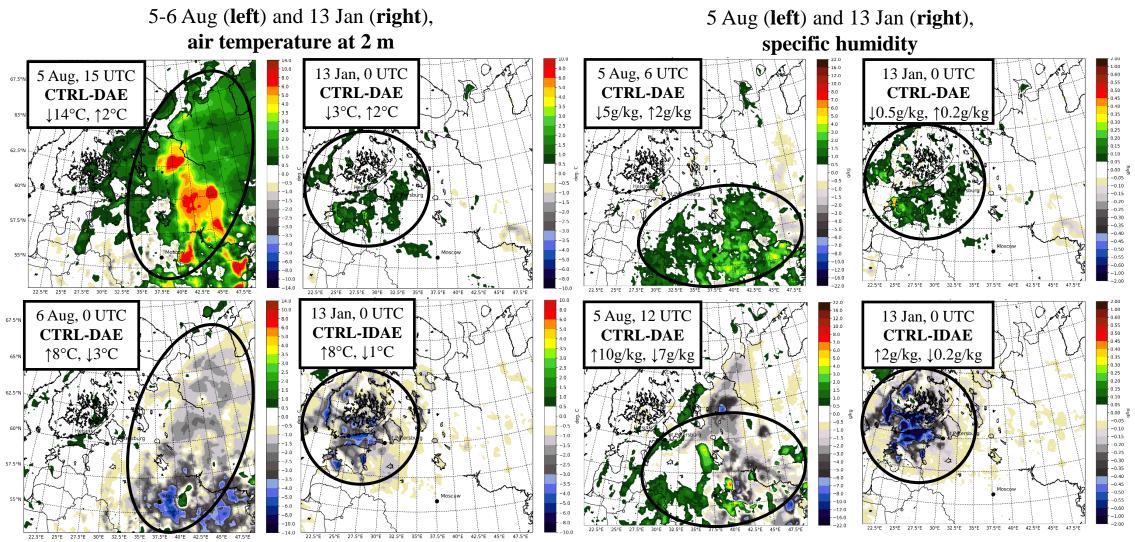
- Account for aerosol characteristics effects (e.g. aerosol size, number, solubility, etc.) on cloud formation and microphysics
- Account for cloud droplets characteristics evolution in time



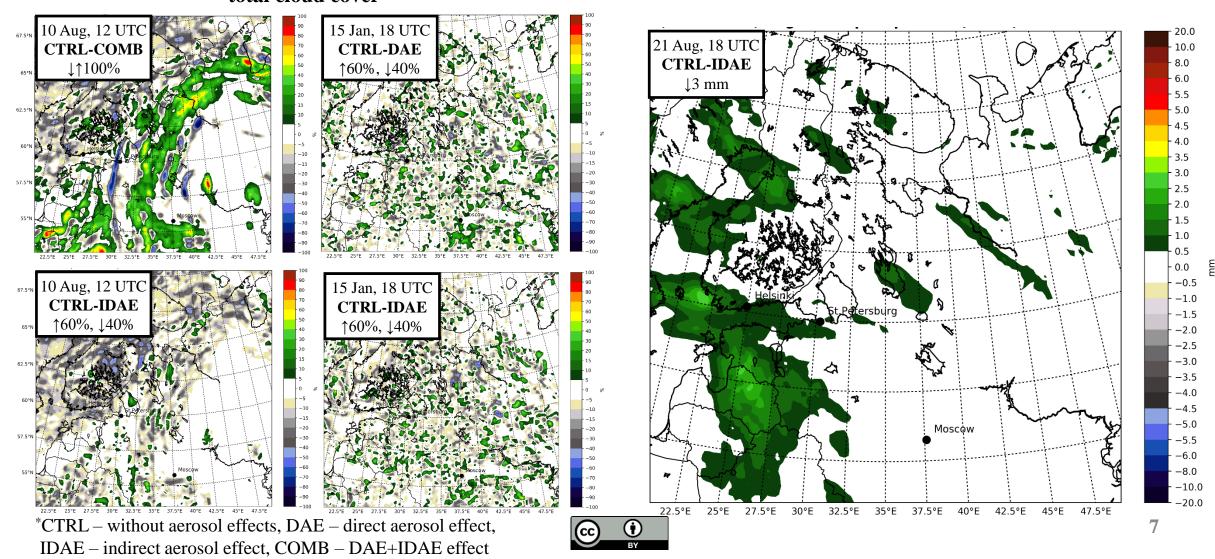
Main types of the aerosol effects



GIS INTEGRATION


- GIS integration of modeling results (SO₂ concentration and sulfate wet deposition) to QuantumGIS (QGIS)
- Reprojecting data to unique spatial grid
- Visualization and analysis of results

AEROSOL FEEDBACKS IN NORTH-WEST RUSSIA

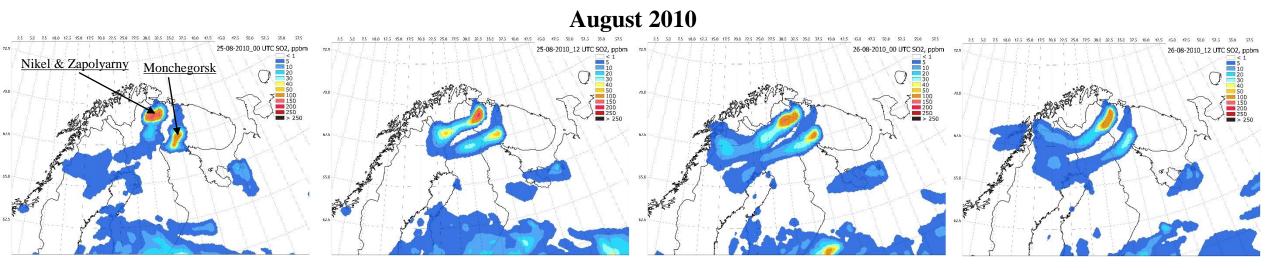

*CTRL – without aerosol effects, DAE – direct aerosol effect, IDAE – indirect aerosol effect

AEROSOL FEEDBACKS IN NORTH-WEST RUSSIA

10 Aug (left) and 15 Jan (right), total cloud cover

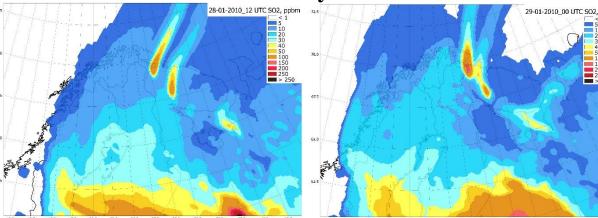
21 Aug, precipitation

AEROSOL FEEDBACKS IN METROPOLITAN AREAS


- Aerosol effects were more significant in **August** than in **January**;
- Changes in meteorological parameters more distinguishable:
 - in Moscow and St. Petersburg during August

- in Helsinki during <mark>January</mark>

	August 2010					January 2010			
	St. Petersburg			Moscow			Helsinki		
Meteorological	Aerosol	Max	Max	Aerosol	Max	Max	Aerosol	Max	Max
parameter	effect	increase	decrease	effect	increase	decrease	effect	increase	decrease
Air temperature	COMB	5	10	DAE &	8	14	COMB	8	3
on 2 m,°C	CONID	5	10	COMB	0	14	COMD	0	3
Total cloud	DAE &	100	100	DAE &	100	100	All effects	100	90
cover, %	COMB	100	100	COMB	100	100	All effects	100	90
Specific	COMD	6	6	DAE &	<i>(</i>	6	IDAE &	2	0.2
humidity, g/kg	COMB	6	6	COMB	6	6	COMB	2	0.2
Precipitation,	IDAE &	<u> </u>	10	DAE &	1 5	25	IDAE &	0.15	0 (
mm	COMB	3	10	COMB	1.5	2.5	COMB	0.15	0.6



SO₂ TRANSPORT

Cases of transboundary pollution, 25-26 Aug 2010 January 2010

Cases of transboundary pollution, 28-29 Jan 2010

29-01-2010_12 UTC SO2, ppbm

SULPHATES WET DEPOSITION

Water body	Time	Deposited sulfates per whole water body area (kg)	Deposited sulfates per 1 km ² (kg/km ²)
Upper-Tuloma reservoir	6 UTC, 19 Aug	19734	22.5
(Kola Peninsula, Russia)	0 UTC, 28 Jan	680	0.8
Lake Inari (Finland)	18 UTC, 21 Aug	49297	47
	12 UTC, 31 Jan	2461	2.4
Laka Lačiázni (Norman)	12 UTC, 22 Aug	1674	24.5
Lake Iešjávri (Norway)	12 UTC, 28 Jan	113.7	1.7
Lake Stora Lulevatten	12 UT, 24 Aug	1462	5.6
(Sweden)	12 UTC, 4 Jan	160	0.6

CONCLUDING REMARKS

Aerosol influence on meteorological parameters

- Aerosol influence more significant during Aug 2010;
- Air temperature on 2 m:
 - Direct effect decreased (on 14°C in Aug, on 6 °C in Jan);
 - Indirect and Combined effects increased (on 6-10°C in Aug and Jan);
- Specific humidity:
 - Direct effect decreased in Jan (on 1 g/kg), increased in Aug (on 10 g/kg);
 - Indirect and combined effects decreased in Aug (on 4-12 g/kg),

increased in Jan (on 2 g/kg);

- Three effects changed **total cloud cover** on 100% in both months;
- Three effects decreased precipitation on 2-20 mm in Aug and 0.6-2.5 mm in Jan;
- The changes of meteorological parameters were more significant:
 - in St. Petersburg and Moscow during Aug 2010;
 - in Helsinki during Jan 2010.

CONCLUDING REMARKS

Spatio-temporal distribution of SO₂ and sulfate wet deposition

- More cases (15 vs 9 days) of transboundary SO₂ pollution to the territory of Northern Europe in Aug 2010;
- Higher SO₂ concentrations over Kola Peninsula and Northern Europe in Jan 2010;
- Number of cases with wet deposition and amount of deposited sulfates were higher in Aug 2010.
- The max of sulfates wet deposition was observed in Finland (Lake Inari, 47 kg/km²) and the min in Sweden (Lake Stora Lulevatten, 5.6 kg/km²) in Aug 2010.

REFERENCES

1. Baklanov, A., Smith Korsholm, U., Nuterman, R., Mahura, A., Nielsen, K. P., Sass, B. H., Rasmussen, A., Zakey, A., Kaas, E., Kurganskiy, A., Sørensen, B., and González-Aparicio, I.: Enviro-HIRLAM online integrated meteorology–chemistry modelling system: strategy, methodology, developments and applications (v7.2), Geosci. Model Dev., 10, 2971–2999, https://doi.org/10.5194/gmd-10-2971-2017, 2017.

Nerobelov G., Sedeeva M., Mahura A., Nuterman R., Mostamandi S., Smyshlyaev S.
 Online integrated modeling on regional scale in North-West Russia: evaluation of aerosols influence on meteorological parameters. Geography, Environment, Sustainability.
 2018;11(2):73-83. https://doi.org/10.24057/2071-9388-2018-11-2-73-83

Thank you for your attention!

