

INRAO

Changes in soil carbon stocks and distribution under perennial and annual bioenergy crops

F. Ferchaud¹, B. Mary¹, T. Rupngam² and C. Chenu²

¹ BioEcoAgro Joint Research Unit, INRAE, Université de Liège, Université de Lille, Université de Picardie Jules Verne, 02000, Barenton-Bugny, France

Introduction

- Bioenergy crops are expected to provide biomass to replace fossil resources and reduce greenhouse gas emissions
- There is a wide range of candidate crops
- Impact on SOC is a key point in the evaluation of the greenhouse gas and environmental benefits of bioenergy crops

Aim of the study:

✓ Quantify the impact of different bioenergy crops under contrasted managements on SOC (stocks and distribution)

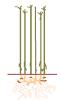
Experimental site and treatments

Field experiment established in 2006 in northern France

10.8 °C 677 mm yr⁻¹

Deep loamy soil (Luvisol)

A wide range of bioenergy crops with different management practices


Perennial crops **Mis**canthus or **Swi**tchgrass

Alfalfa -**Fes**cue

Semi-perennial crops

Annual

Triticale -Sorghum or maize

Two fertiliser-N rates:

Crop	Fertiliser-N rate (kg ha ⁻¹)	
	N-	N+
Mis	0	120
Swi	0	120
Fes	83	173
Alf	0	0
Sor	0	120
Maize	34	128
Tri	60	120

SOC stocks measurements

Three sampling dates: 2006, 2011-2012, 2018

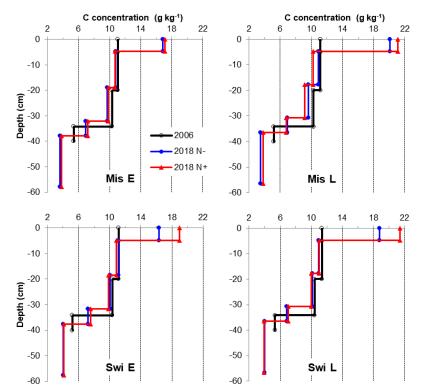
Soil cores:

6 cores per plot × 3 blocks 8 cm diameter

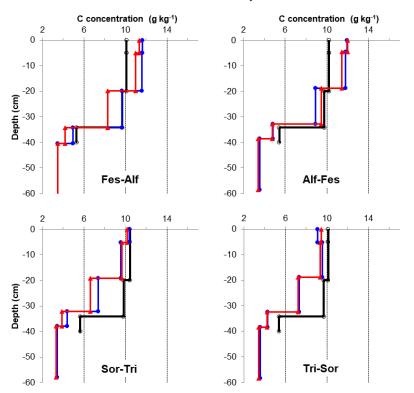
0-40 cm in 2006 and then 0-60 cm (5 layers)

Bulk density:

Gamma probe and steel cylinders



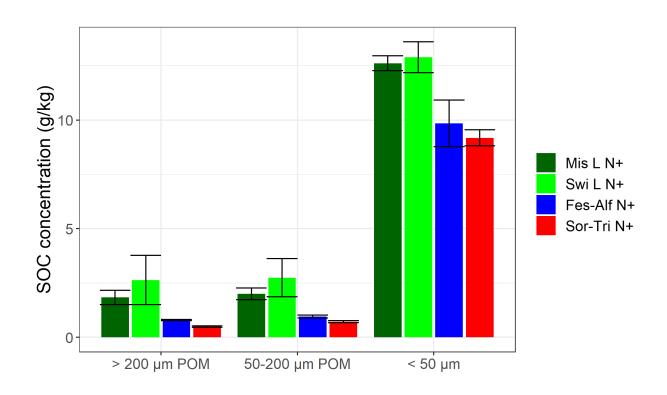
- C, N and δ^{13} C analysis
- SOC stocks calculated at equivalent soil mass (ESM) in all layers
- Soil particle-size fractionation for some treatments



> SOC concentrations in 2006 and 2018

Perennial crops

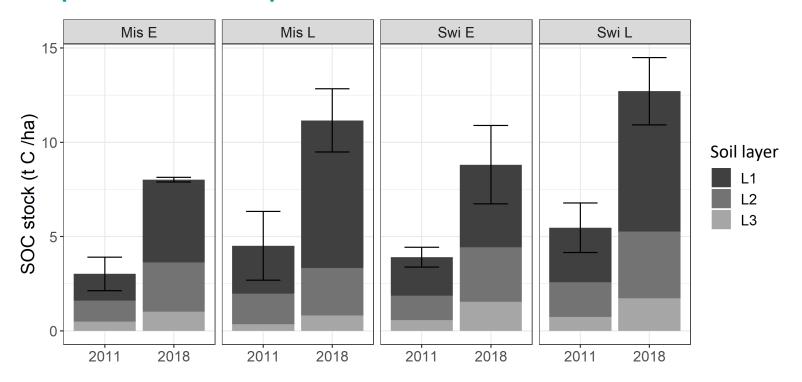
Other crops



- Significant increase in L1 (+ 7.6 g kg⁻¹)
- Lower layers: decreasing trend
- No significant effect of N fertilization

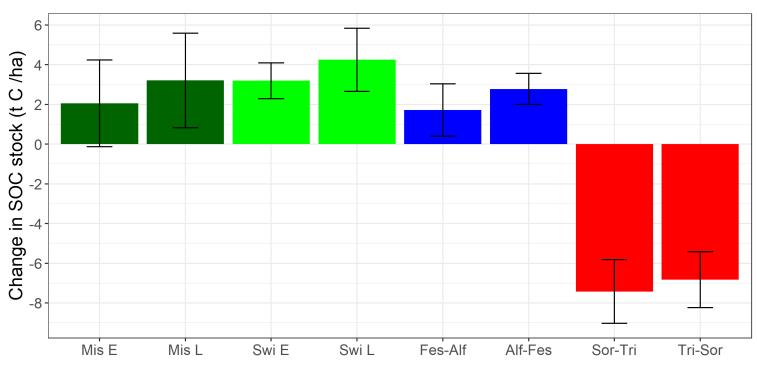
- Semi-perennial crops: significant increase in L1 and L2 (+ 1.4 g kg⁻¹)
- Annual crops: decrease in all layers
- No significant effect of N fertilization

> SOC fractions in 2018 (Layer 1 ≈ 0-5 cm)



• SOC increase in L1 under perennial crops corresponded to an increase in coarse organic fractions (> 200 μ m POM et 50-200 μ m POM) but also in the more stabilized 0-50 μ m fraction

Accumulation of new C4-derived SOC under perennial crops


- More than half of the new SOC (58% on average in 2018) accumulated in the surface layer (L1 \approx 0-5 cm)
- Larger increase of new SOC under late (L) than early (E) harvest

Changes in SOC stocks between 2006 and 2018

Old ploughed layer (L1-3 \approx 0-33 cm)

- SOC stocks increased under perennial and semi-perennial crops:
 - ✓ +3.2 and +2.2 t C ha⁻¹ respectively
 - \checkmark +5.2 and +4.0 % yr⁻¹ respectively
- SOC stocks decreased under annual crops (-7.1 t C ha⁻¹ => -12.7 % yr⁻¹)

> Conclusions

- Contrasted impacts of bioenergy crops on SOC stocks:
 - ✓ perennial and semi-perennial crops increased SOC stocks
 - ✓ annual crops (whole plant harvested) decreased SOC stocks
- No significant effect of N fertilization on SOC stocks and distribution
- Stratification of SOC concentrations under perennial crops, with a large increase in the surface layer (L1 ≈ 0-5 cm):
 - ✓ observed for both POM and clay-silt size fractions
 - ✓ in relation to new C4-derived SOC accumulation, mainly occurring in L1 (importance of aboveground C inputs?)
- Perennial crops: higher increase of new SOC in late than in early harvest suggests higher C inputs in late harvest

