Faulted geological contacts: constraining uncertainty of discontinuities orientation using triangulation and combinatorial algorithm

M. Michalak ${ }^{1}$, R. Kuzak ${ }^{1}$, P. Gładki² ${ }^{2}$, and A. Kulawik ${ }^{2}$

University of Silesia in Katowice, Poland
${ }^{1}$ Faculty of Natural Sciences, Institute of Earth Sciences in Sosnowiec
${ }^{2}$ Faculty of Science and Technology
(1) Introduction
(2) Results
(3) Summary

M. Michalak ${ }^{1}$, R. Kuzak ${ }^{1}$, P. Gładki ${ }^{2}$, and A. Kulawik ${ }^{2}$ Michalak et al. All rights reserved, mimichalak@us.edu.pl

Problem

We'd like to create a simple geological model on a faulted contact using three-point method and triangulation. But we don't know the extent to which this combination of methods is capable of representing faults...

Related approach

In fact we are developing an approach that has been already described: https://doi.org/10.1016/j.cageo.2019.104322

Using Delaunay triangulation and cluster analysis to determine the orientation of a sub-horizontal and noise including contact in Kraków-Silesian Homocline, Poland

Michat P. Michalak ${ }^{2,+1}$, Waldemar Bardziński ${ }^{\text {b,2 }}$, Leslaw Teper ${ }^{2,3}$, Zbigniew Matolepszy ${ }^{\text {c,4 }}$

Brief introduction to results

To address this issue, we created two synthetic models of faulted contacts: 1) vertical and 2) dipping at 60° to west.

Due to limited space of this presentation, we will focus on the second model.

We mainly ask:

1) can we accurately calculate the orientation of a discontinuity using three-point method and triangulation?
2) can combinatorial algorithm be useful in better constraining the discontinuity orientation?
3) can the distributions be modeled using circular von Mises distribution?

Variability of dip direction

This is a faulted contact dipping at 60° to west. Therefore, its expected dip direction is 270°.

Variability of dip direction

This is a distribution of orientations associated with the previously presented triangulated model (B). It seems that the concentration around the expected orientation $\left(270^{\circ}\right)$ is quite low...

Symbol	Fenture	
	Pole Veatars	
	Plot Mode	pole veaturs
	Vector Count	21 (21 Erties)
	Hemisplere	
	Projection	Equal Angle

Symbel \bullet	Featare Dio Vedors	
	Plot Mode	Dip Vatas
	Vector Count	21 (21 Entries)
	Hemisplere	Lowe
	Projection	Equial Anglo

Employing combinatorial algorithm

What about creating all possible triangles from the vertices given? This is the result:

Surprising orientations

Weird but true...

Basic statistics

Mean direction for the triangulated model: 264.8151 Median direction fot the triangulated model: 262.875

Mean direction for the combinatorial model: 264.8618
Median direction fot the combinatorial model: 267.7852
We are not delighted but...

Statistics

- QQ-plots for the observations taken and statistical tests seem not to invalidate the hypotheses: 1) of 270° mean and 2) that orientations from triangulated models may be modeled using circular von Mises distributions

- statistical tests conducted for combinatorial approach do invalidate both the hypotheses: 1) of 270° mean and 2) that orientations from combinatorial approach may be modeled using circular von Mises distributions

Conducting spatial clustering

Let's conduct spatial clustering using three different approaches:

Conclusion

- The three-point approach in a faulted area must be used with caution as it can give counterintuitive dip directions for triangles cutting a fault.

Conclusion

- The three-point approach in a faulted area must be used with caution as it can give counterintuitive dip directions for triangles cutting a fault.
- While intrinsically incapable of calculating the fault dip angle, the three-point approach can also be adjusted to constrain the variability of the fault strike. It does not have the potential however of indicating the dip direction but only the relative positions of hangingwall and footwall.

Conclusion

- The three-point approach in a faulted area must be used with caution as it can give counterintuitive dip directions for triangles cutting a fault.
- While intrinsically incapable of calculating the fault dip angle, the three-point approach can also be adjusted to constrain the variability of the fault strike. It does not have the potential however of indicating the dip direction but only the relative positions of hangingwall and footwall.
- The combinatorial algorithm of generating all three-element subsets from an n-element set may be used to better assess (at least visually) the confidence interval for the fault strike that can be further used for conducting spatial clustering.

Conclusion

- Equal values of dip directions obtained for different borehole configurations should be investigated in terms of a hidden geometrical rule underlying this effect

Conclusion

- Equal values of dip directions obtained for different borehole configurations should be investigated in terms of a hidden geometrical rule underlying this effect
- statistical tests conducted for the combinatorial approach pose a challenge. It could be possibly solved by selecting only triangles below a given collinearity limit

Conclusion

- Equal values of dip directions obtained for different borehole configurations should be investigated in terms of a hidden geometrical rule underlying this effect
- statistical tests conducted for the combinatorial approach pose a challenge. It could be possibly solved by selecting only triangles below a given collinearity limit
- The patterns obtained through the proposed maps are clearly sensitive to the selection of the points representing a triangle. Taking more points from its interior or making a regularized grid) version could be a solution to this problem.

Thanks for your attention!

