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Model reliability is an important aspect of model assessment, entailing the
detailed investigation of model performance, parameter identifiability, model

structure suitability and prediction uncertainty (Wagener, Boyle et al. 2001).

. 1 Model performance assessment: refers to assessment of model structural adequacy in

Using a Process-based Diagnostic Tool

simulating dominant hydrological process.
Model functionality assessment: refers to model capability assessment in reflecting
additional system knowledge from model output.

The best ensemble members of EPRSFYW, KGE, and NSE lead to different parameter combinations. In particular,

recharge contributing area, A and groundwater variability constant, a_ , have notably different ranges depending on

the applied constraints.
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- Daily climate data from Central Institution for Meteorology and Geodynamics in Fig 4. The parameter ranges from the model confinement stage considering P1 and P2 sub-periods.

Austria (ZAMG) covering the period of 1994-2016.

- Discharge data (1995-2015) https://ehyd.gv.at/#

- Spring and precipitation d*®0 isotope data digitized from the work Maloszewski,
Stichler et al. 2002

Model performance was assessed by Kling Gupta Efficiency (KGE) and Nash Suffice Efficiency (NSE), as well as
karst system signatures: Autocorrelation (ACF), Cross Correlation (CCF), Spring Variability Index (SVI), Flow

Duration Curve (FDC). The differential split-sampling test results are presented in Fig 5. The validation over the P1 (wet period) is

much better than the P2 (dry period). The figure examines to what extent the proposed model confinement
approach have influences on the strength of the model calibration.

Model Functionality was assessed by a newly described area-based performance metric:
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