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XPS-like evaluation of valence-to-core
X-ray emission spectra:
The case of germanate glasses
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Motivation

a) The number of methods available to investigate the polymerization of germanate glasses
(studied as structural analog of silicate glasses) in situ in high-pressure cells or other
confined environments is limited. A complementary method would be desirable.
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c) The oxygen 2s binding energies can be used for the same information.
Here valence-to-core X-ray emission spectroscopy (vic-XES) comes into play!
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What does valence-to-core XES (vtc-XES) probe?

XES probes - practically speaking - the binding energy of occupied orbitals in any material by
high-energy-resolution measurements of the characteristic element fluorescence lines, the
same that are used in X-ray fluorescence analysis like in the EPMA. Vtc-XES records the
binding energies of valence electrons, that have binding energies below 50 eV. With one
important difference to XPS: The fluorescence signal from valence electrons in systems like
germanates is hard X-ray radiation, which does not need vacuum.

This figure shows a comparison of a XPS and a vtc-
XES spectrum of quartz-like GeO2. The transition rules

This figure shows a typical XES spectrum of a in XES lead to different relative peak intensities, but the
germanate, with the vtc part magnified by x20. energies are the same. Note the oxygen 2s peak.
Note the X-ray photon energy on the x-axis. emission energy (eV)
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How are valence-to-core XES spectra recorded?

Unfortunately, XES is 99% a synchrotron-based spectroscopy technique. Especially the
valence-to-core signal is too weak to be recorded with laboratory X-ray sources.

These figures show von-Hamos spectrometers, which are energy-dispersive by using
cylindrically bent analyzer crystals and 2D detectors.
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The high sensitivity of the KB’ emission line

The oxygen 2s electron binding energy shows
up in vtc-XES spectra as the so-called KB”
(spell: ,K beta double-prime®). It is different by
about 0.7 eV between quartz-like and rutile-
like GeO,, which have germanium in fourfold
and sixfold coordination, respectively.

Compressed amorphous GeO, in diamond anvil
cells gradually increases coordination from four to
six, which results in a remarkable shift (and
intensity change) of the KB”. This coordination
increase can be understood as a strong change in
the first coordination shell. Both figures are from

Spiekermann et al. 2019, Physical Review X, open
source.
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Going from first shell to second shell effects

The past development of KB” X-ray emission spectroscopy as a tool with which we can
extract first-shell information on germanium in high-pressure applications was a team
effort, that benefitted from careful reviewer comments. Here is the title and the list of my
colleagues:

PHYSICAL REVIEW X 9, 011025 (2019)

Persistent Octahedral Coordination in Amorphous GeO, Up to 100 GPa
by K" X-Ray Emission Spectroscopy

G. Spiekermann,l'z'j'* M. Harder,2 K. Gilmore,4 P. Zalden,5 Ch. J. Sahle,4 S. Petitgirard,6 M. Wilke,1 N. Biedern‘lann,l'5
C. Weis,7 W. Morgenroth,8 J.S. Tse,9 E. Kulik,2 N. Nishiyarna,z'10 H. Yavag,z'” and C. Sternemann’
Institut fiir Geowissenschaften, Universitit Potsdam, 14476 Potsdam, Germany
*Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
*Deutsches GeoForschungsZentrum GFZ, 14473 Potsdam, Germany
AEurapean Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38043 Grenoble, France
5Eumpean XFEL, 22869 Schenefeld, Germany
SUniversitit Bayreuth, Bayerisches Geoinstitut BGl, 95447 Bayreuth, Germany
" Fakultiit Physik/DELTA, Technische Universitit Dortmund, 44221 Dortmund, Germany
SInstitut fiir Geowissenschaften, Universitit Frankfurt, 60438 Frankfurt am Main, Germany
gDeparImenr of Physics, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
1OT()nkyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
Uinac Coherent Light Source, SLAC National Accelerator Laboratory,
2575 Sand Hill Road, Menlo Park, California 94025, USA

The ongoing development of KB” X-ray emission spectroscopy as a tool with which we
can extract second-shell information is what | am presenting now.
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KB reflects the network polymerization in germanates

Figure left: The oxygen 2s electron binding energy shows up in germanium vtc-XES
spectra as the so-called KB” (spell: ,K beta double-prime®).

Figure right: DFT calculations of a germanate pyroxene structure show that the overall
projected density-of-states of oxygen 2s (black line) is composed of the different binding
energy contributions from bridging (red) and non-bridging oxygen (blue).

This motivates the question: Will the Kf” emission line shift, when we measure germanate
glasses with gradually increasing amount of non-bridging oxygen? (see next slide)
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KB reflects the network polymerization in germanates

t

When we measure germanate glasses and 0.8 r——— I .

crystals from pure quartz-like GeO, to olivine-like  [S06 j.-}’ T + ¢ $~ 453

CaMgGeOQ,, the KB” emission line shifts to lower S04T ﬂ* 1 ,é N

binding energies, because of the increase in non- 02 if % \? z

bridging oxygen atoms. e 0 99
NBO/T NBO/T

This shift amounts to 0.7 eV, a value clearly to
resolve in XES spectra (left inset).
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At the same time, the width of the KB emission
line passes through a maximum, where the
amounts of BO and NBO are equal.
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