

Georg Spiekermann University of Potsdam and ETH Zürich

Universität Potsdam

(†)

CC

valence-to-core X-ray emission spectra / 6. May 2020 / EGU Display / Georg Spiekermann

a) The number of methods available to investigate the polymerization of germanate glasses (studied as structural analog of silicate glasses) *in situ* in high-pressure cells or other confined environments is limited. A complementary method would be desirable.

b) X-ray photoelectron spectroscopy (XPS), probing e.g. the oxygen 1s binding energy, is a *in-vacuum* direct method to access the difference in binding energy between bridging oxygen (BO) and nonbridging oxygen (NBO) atoms. See Figure on the right for a oxygen 1s XPS spectrum of NaAlSi₂O₆ jadeite. (Figure from Nesbitt et al. 2014 in RiMG)

Universitäx

Universität Potsdam

c) The oxygen 2s binding energies can be used for the same information. Here valence-to-core X-ray emission spectroscopy (vtc-XES) comes into play!

XES probes - practically speaking - the binding energy of occupied orbitals in any material by high-energy-resolution measurements of the characteristic element fluorescence lines, the same that are used in X-ray fluorescence analysis like in the EPMA. Vtc-XES records the binding energies of valence electrons, that have binding energies below 50 eV. With one important difference to XPS: The fluorescence signal from valence electrons in systems like germanates is hard X-ray radiation, which does not need vacuum.

This figure shows a typical XES spectrum of a germanate, with the vtc part magnified by x20. Note the X-ray photon energy on the x-axis.

This figure shows a comparison of a XPS and a vtc-XES spectrum of quartz-like GeO2. The transition rules in XES lead to different relative peak intensities, but the energies are the same. Note the oxygen 2s peak.

(†)

Unfortunately, XES is 99% a synchrotron-based spectroscopy technique. Especially the valence-to-core signal is too weak to be recorded with laboratory X-ray sources.

These figures show von-Hámos spectrometers, which are energy-dispersive by using cylindrically bent analyzer crystals and 2D detectors.

4x4 crystals at the European XFEL

(†)

valence-to-core X-ray emission spectra / 6. May 2020 / EGU Display / Georg Spiekermann

The high sensitivity of the K β " emission line

The oxygen 2s electron binding energy shows up in vtc-XES spectra as the so-called K β " (spell: "K beta double-prime"). It is different by about 0.7 eV between quartz-like and rutilelike GeO₂, which have germanium in fourfold and sixfold coordination, respectively.

Compressed amorphous GeO_2 in diamond anvil cells gradually increases coordination from four to six, which results in a remarkable shift (and intensity change) of the K β ". This coordination increase can be understood as a strong change in the first coordination shell. Both figures are from Spiekermann et al. 2019, Physical Review X, open source.

The past development of K β " X-ray emission spectroscopy as a tool with which we can extract first-shell information on germanium in high-pressure applications was a team effort, that benefitted from careful reviewer comments. Here is the title and the list of my colleagues:

PHYSICAL REVIEW X 9, 011025 (2019)

Persistent Octahedral Coordination in Amorphous GeO_2 Up to 100 GPa by $K\beta''$ X-Ray Emission Spectroscopy

G. Spiekermann,^{1,2,3,*} M. Harder,² K. Gilmore,⁴ P. Zalden,⁵ Ch. J. Sahle,⁴ S. Petitgirard,⁶ M. Wilke,¹ N. Biedermann,^{1,5} C. Weis,⁷ W. Morgenroth,⁸ J. S. Tse,⁹ E. Kulik,² N. Nishiyama,^{2,10} H. Yavaş,^{2,11} and C. Sternemann⁷

 ¹Institut für Geowissenschaften, Universität Potsdam, 14476 Potsdam, Germany ²Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany ³Deutsches GeoForschungsZentrum GFZ, 14473 Potsdam, Germany
⁴European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38043 Grenoble, France ⁵European XFEL, 22869 Schenefeld, Germany
⁶Universität Bayreuth, Bayerisches Geoinstitut BGI, 95447 Bayreuth, Germany
⁷Fakultät Physik/DELTA, Technische Universität Dortmund, 44221 Dortmund, Germany
⁸Institut für Geowissenschaften, Universität Frankfurt, 60438 Frankfurt am Main, Germany
⁹Department of Physics, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada ¹⁰Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan ¹¹Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA

The ongoing development of K β " X-ray emission spectroscopy as a tool with which we can extract second-shell information is what I am presenting now.

(†)

CC

 $(\mathbf{\hat{I}})$

(cc)

Figure left: The oxygen 2s electron binding energy shows up in germanium vtc-XES spectra as the so-called K β " (spell: "K beta double-prime").

Figure right: DFT calculations of a germanate pyroxene structure show that the overall projected density-of-states of oxygen 2s (black line) is composed of the different binding energy contributions from bridging (red) and non-bridging oxygen (blue).

This motivates the question: Will the K β " emission line shift, when we measure germanate glasses with gradually increasing amount of non-bridging oxygen? (see next slide)

When we measure germanate glasses and crystals from pure quartz-like GeO_2 to olivine-like $CaMgGeO_4$, the K β " emission line shifts to lower binding energies, because of the increase in non-bridging oxygen atoms.

This shift amounts to 0.7 eV, a value clearly to resolve in XES spectra (left inset).

At the same time, the width of the K β " emission line passes through a maximum, where the amounts of BO and NBO are equal.

Conclusion:

With some more effort, this effect may be turned into a probe of the germanate network polymerization in low-pressure diamond anvil cell experiments or other confined environments like solutions, furnaces etc.

No need of vacuum due to the high energy of X-ray photons.

 $(\mathbf{\hat{I}})$

(cc)

