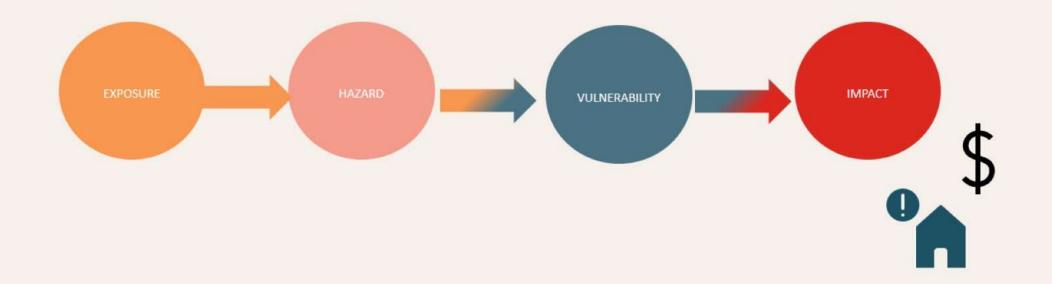
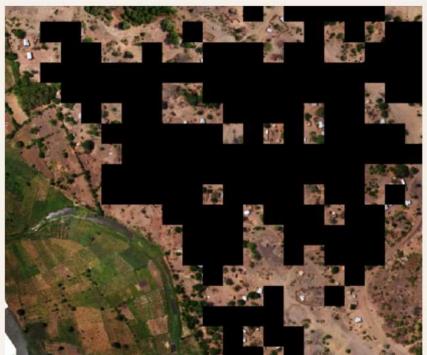
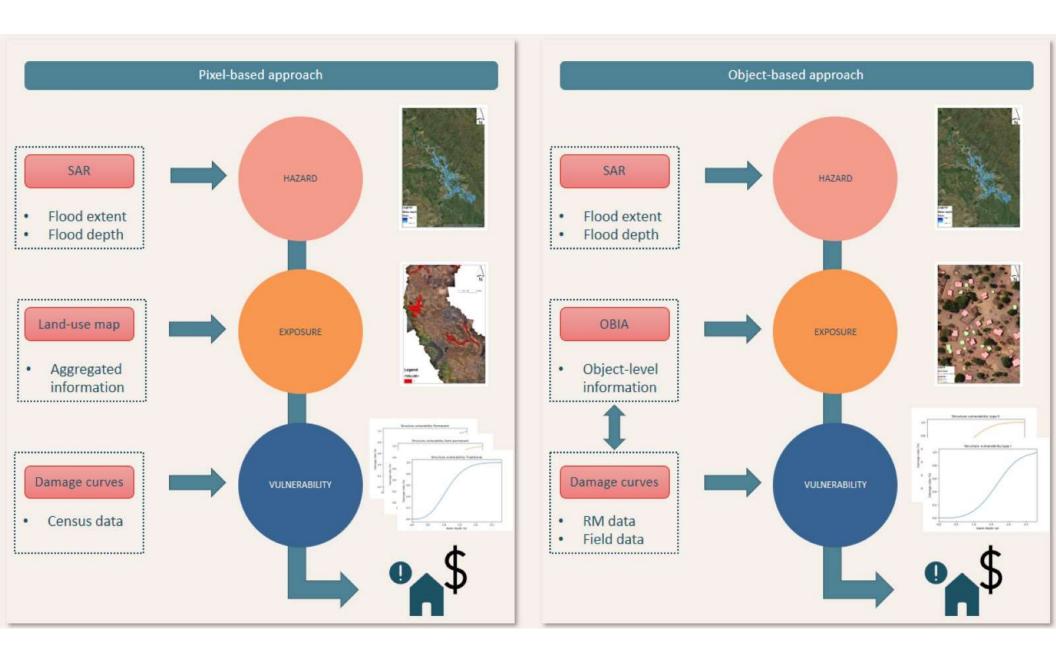


Improving flood damage assessments by retrieving building characteristics through automated UAV image processing



Lucas Wouters Msc. Hydrology





Objective: create flood damage model based on the of the automated image processing of UAV imagery

- Generate flood susceptibly information on object (building) level
- Compare flood damage with a land-use (pixel) model

Object-based Image Analysis

Segmentation

Mean-shift

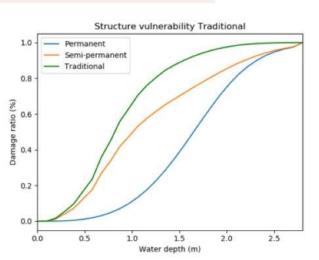
Classification

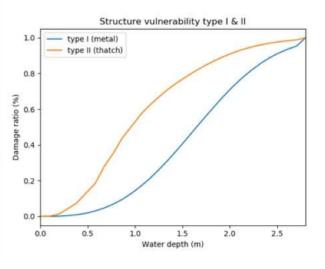
- Support Vector Machine
- Based on spectral properties and height

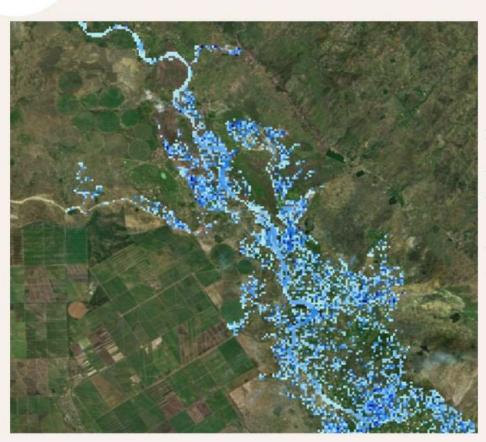
Drone imagery collected by the Netherlands Red Cross/510

Orfeo-Toolbox

Damage curves


Census data building stock:


- Permanent
- Semi-permanent
- Traditional



Flood hazard & damage assessment

Damage
$$[\$] = \sum_{i=1}^{3} damage(i) * ba(i) * rc(i)[\$]$$

Where:

- i =the building typology as determined by the classification
- Damage(i) is the damage represented trough the damage curve, using as input the water depth [m]
- ba(i) is the area of the building in m^2
- rc(i) is the replacement costs per m² based on the typology (i)

Performance statistics

Confusion matrix

	Positive	Negative
Positive	TP	FN
Actual value Negative	FP	TN
	B 11.11	

Prediction outcome

F1-score:
$$(0-1)$$

$$F1 - Score = 2 * \frac{P * R}{P + R}$$

$$R = \frac{TP}{TP + FN}$$

$$P = \frac{TP}{TP + FP}$$

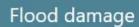
TP = predicted + manual FP = predicted x manual TN = manual x predicted FN = not detected

Cohen Kappa:

$$\kappa = \frac{A - Pa}{1 - A}$$

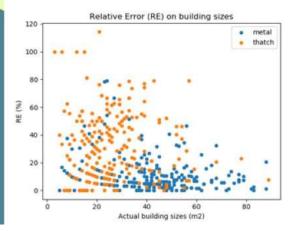
$$Pa = \frac{1}{n^2} \sum_{i=1}^{C} pi + p_{+}i$$

1-1			
Value of K	Strength of agreement		
< 0.20	Poor		
0.21 - 0.40	Fair		
0.41 - 0.60	Moderate		
0.61 - 0.80	Good		
0.81 - 1.00	Very good		


Accı	iracy
(0	- 1)

$$A = \frac{TP + TN}{TP + FP + TN + TN}$$

Results & discussion



	Object	Pixel	OSM
# of buildings	1466	1514	1352
# flooded	84	90	97
Damage (€)	10,140	15,728	8

- Difference in exposure (#, and size)
- Approach specific damage curves

OBIA performance

Category	F1-score	F1-score (height)	Accuracy	Карра
Vegetation	0.91			
Metal roof	0.89	0.90		
Thatch roof	0.53	0.75	0.77	0.71
bare ground	0.49	*		
shadow	0.90	•		

Conclusions & Recommendations

Object-based approach using UAV imagery to calculate flood damage

Flood damage: Object < Pixel

Accuracy results vary among catergories due to spectral similarities

Justify assumptions of roof and wall material with more samples

Combine results of OBIA with homogenous pixels maps scale up

Questions