Cloud condensation nuclei (CCN) & Black Carbon (BC) measurements with the HALO aircraft in European and Asian airspace

M. L. Pöhlker¹, O. O. Krüger¹, C. Pöhlker¹, B. A. Holanda¹, Karine Chevalier¹,
 T. Klimach¹, H. Su¹, Y. Cheng^{1,4}, J. P. Burrows², V. Nenakhov²,
 M.D Andrés Hernández², U. Pöschl¹, and the EMeRGe team

¹ Max Planck Institute for Chemistry, Mainz, Germany ² Institute of Environmental Physics, University of Bremen, Bremen, Germany

m.pohlker@mpic.de

© Authors. All rights reserved

Atmospheric Aerosol Properties & Interactions

- Anthropogenic/polluted vs. natural/pristine conditions
- Aerosol effects on radiation, clouds and precipitation

HALO-CCN-Rack

\rightarrow 1 s time resolution

- CCN-200: Dual Column Cloud Condensation
 - CCN number concentration (N_{CCN})
 A: S = 0.3 % (constant)

B: S = 0.1 – 0.9 % (scanning)

- SP-2: Single Particle Soot Photometer:
 - Black Carbon (BC) size distribution
 - Scatter Particle (SC) size distribution
 - BC coating
- Impactor: Aerosol sampling
 - microstructure
 - composition
 - e.g. SEM-EDX, STXM-NEXAFS

EMeRGe Asia & EMeRGe Europe Field Campaigns

Vertical Profile of CCN & BC

- Elevated aerosol loading up to ~4 km
- Elevated aerosol concentrations in Asia, in comparison to Europe

Rome Case Studie

This flight shows higher N_{CCN} from biomass burning in comparison to Rome city plume

- Largest number concentrations of anthropogenic aerosol in boundary layer – steep decrease with altitude
- Similar shape of vertical profile in Asia & Europe with larger concentrations in Asia
- Higher N_{CCN} for biomass burning aerosol in comparison to urban plume from Rome