Cropland is expanding yet productivity is decreasing in Malawi The results of a long-term satellite image analysis

<u>Chengxiu Li^{1*}, Jadu Dash¹, Meryl Jagarnath¹, Daniela Anghileri¹, Mathews Tsirizeni², Oscar Kambombe³,</u> Ellasy Gulule Chimimba³, Francis Oloo⁴, Fiona Ngarachu⁵, Matt Kandel¹, Chris Shisanya⁵, Samuel N.A.Codjoe⁶

¹ University of Southampton ² Lead, Malawi ⁵ Kenyatta University ⁴ Technical University of Kenya * Email: Chengxiu.Li@soton.ac.uk

³ University of Malawi ⁶ University Ghana

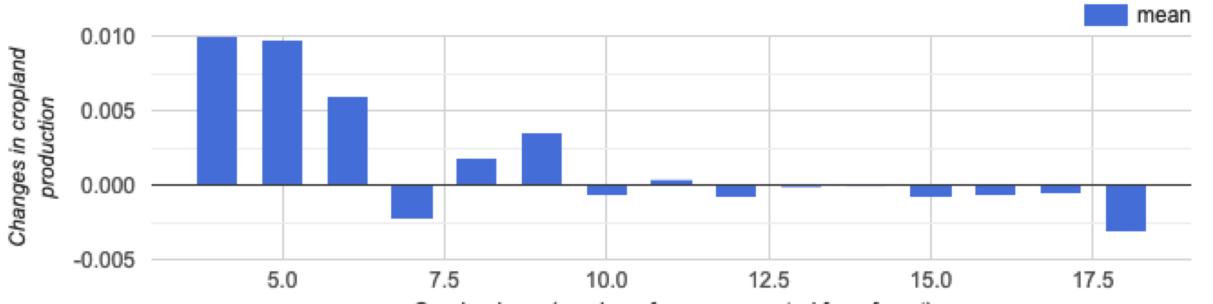
UNIVERSITY OF Southampton

Key words: Earth observation, cropland expansion, cropland productivity, Malawi

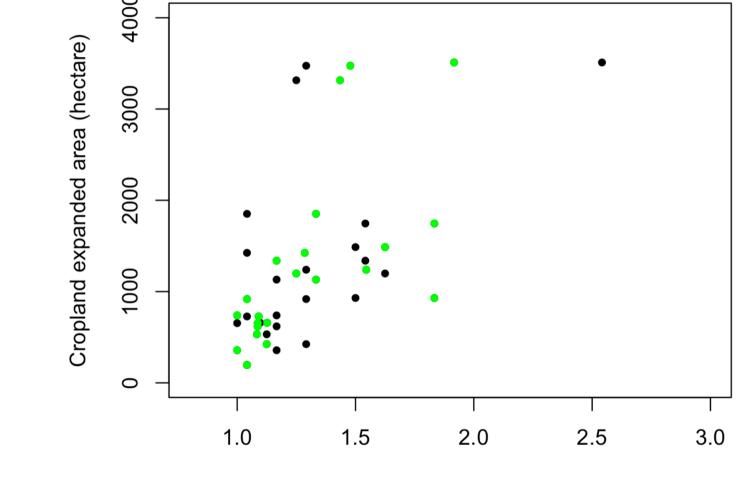
Background and objectives

With rising demand for food in Sub-Saharan Africa (SSA), conversion of forests, grasslands, wetlands and shrublands into cultivated land has become a common strategy for boosting agricultural production¹⁻². However, the expansion of croplands is not a sustainable form of agricultural development due to the limited arable land³. Monitoring of cropland expansion and understanding relevant drivers are therefore vital in focusing appropriate interventions to ensure sustainable food production and environmental conservation³.


We aim to answer research questions:


- 1. When and where cropland expansion has happened in Malawi?
- 2. What are drivers of cropland expansion?

Data and methods


- Monitor cropland expansion
 - Satellite images (Sentinel-2, Landsat-8): classify land cover type
 - Forest loss dataset (2001-2018): monitor cropland expansion in relation to forest loss; detect cropland age
 - Satellite vegetation index product (MODIS NDVI): monitor changes in cropland productivity (proxy)
- Explore factors that could explain cropland expansion
 - Integrated Household Survey in Malawi (i.e. agriculture land in estate, irrigation level, population, soil erosion, etc)

Results

1. 3.8 % of cropland expansion are contributed by forest loss (Fig. 1) 2. Declined productivity is more common in older cropland (Fig.2) 3. Expansion is positively correlated with estate agricultural land (Fig. 3), but negatively related to the level of irrigation (Table. 1)

Estate shared agricultural land

Fig. 3 Correlation between the level of share of the agriculture land is in estates (x-axis) and expanded area (y-axis) at district level. Green color indicate district with

Correlation Nr of districts Variables Share of the agri 0.41 0.001 22 land in estate Landhold size 0.13 0.1 22 0.09 0.19 21 evel of Irrigatio 0.36 0.05 **Plantation area** 17 **Cultivation area** 0.05 0.34 21 0.05 0.36 19 **Tobacco land size** 0.45 0.03 23 **Population** Changing 0.59 0.02 22 productivity **Soil erosion** 0.007 0.7 22 Plot size (GPS) 0.000 0.9 22

Table. 1 Lists of variables that are used to analyze their linear correlation between with cropland expansion.

Discussions

- Cropland expansion might not only be dominated by small holder farming area but also large estate shared agricultural land.
- The district with higher irrigation level, the less forest area was cleared and converted to agricultural land.
- Population growth is not a driver for cropland expansion.

References:

1. Pellikka, P.K.E., Heikinheimo, etc., 2018. Impact of land cover change on aboveground carbon stocks in Afromontane landscape in Kenya. Appl. Geogr. 94, 178–189. 2. Brink, A.B., Eva, H.D., 2009. Monitoring 25 years of land cover change dynamics in Africa: A sample based remote sensing approach. Appl. Geogr. 29, 501–512. 3. Jayne, T.S., Chamberlin, etc, 2016. Africa's changing farm size distribution patterns: the rise of medium-scale farms. Agric. Econ. (United Kingdom) 47, 197–214.

Acknowledgements

This work is funded through the 'Building REsearch Capacity for sustainable water and food security In drylands of sub-saharan Africa' (BRECcIA) which is supported by UK Research and Innovation as part of the Global Challenges Research Fund, grant number NE/P021093/1