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Solar wind

Solar wind parameters
Verscharen, D., Klein, K.G. & Maruca, B.A. The multi-scale nature of 
the solar wind. Living Rev Sol Phys 16, 5 (2019)

Joseph E. Borovsky Phys. Rev. Lett. 2010

The solar wind is the supersonic flow of magnetized
plasma that can be fast (V ~ 500 - 800 km/s) or slow (V ~ 
300 - 500 km/s).
• The problem of solar wind heating
• Current sheets contributes significantly to the 

spectrum of magnetic turbulence, and thus can be 
important for solar wind heating



MHD classification of discontinuities

Tsurutani B.T. et al. A review of interplanetary discontinuities 
and their geomagnetic effects (2011) 
Hudson P.D. Discontinuities in an anisotropic plasma and their 
identification in the solar wind (1970)

Previous works have seen 100-
200 discontinuities per day.
MHD classification:
Rotational discontinuities:
formed by the Alfven waves in 
heterogeneous plasma 
Tangential discontinuities:
formed at the borders of solar 
wind flows at different speeds

Consider ion dynamics in 
rotational solar wind 
discontinuities.



MMS observations of the 
solar wind current sheets

~30km

V~400 km/s

• Occurrence rate ~140 current sheets per day



CS thickness and 
current density 
distributions 
according to MMS 
observation statistics
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Current sheet thickness shows that
these are kinetic-scale structures.
Such structures should effectively
scatter ions!
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(a) Typical example of solar wind current sheet 

(discontinuity). Three magnetic field components are 

shown in the local coordinate system: Bl is the 

reversing magnetic field component, Bn is the 

component normal to the discontinuity surface, Bm is 

the component peaking at the discontinuity center. 

Coordinate n along the normal to the discontinuity 

surface is reconstructed using the timing technique.

We introduce a simple magnetic field model 

approximating the main discontinuity characteristics: Bl

reversal, Bm peak and constant values at the discontinuity

boundary, constant Bn:

Figures (b) and (c) show the distribution of 𝜎0 and 𝜎1
parameters for the statistics of observed discontinuities.
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Ion interaction with the current sheet
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In the reference frame 𝑝𝑦 = 0 Hamiltonian has the following form:
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Parameters:

𝜌0 =
2𝐻𝑚𝑐

𝑒𝐵0
- Larmor radius, L – CS scale

For small κ, the Hamiltonian equations of motion consist of two pairs of equations for slow (κx,px) and fast 
(z,pz) variables:

Slow variables: (κx, 𝑝𝑥) Fast variables: (z, 𝑝𝑧)
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- crucial parameter controlling the efficiency of such scattering, the 
ratio of magnetic field line curvature radius and ion Larmor radius



Jump of 𝐼𝑧

𝐼𝑧 is conserved with exponential accuracy ∼
exp(−1/𝜅2), and thus 𝐼𝑧(𝜅𝑥, 𝑝𝑥)=const 
determines a particle trajectory in the (𝜅𝑥, 𝑝𝑥) 
plane. However, z-oscillations in U potential can 
be significantly changed due to the evolution of 
U shape, and such changes result in dynamical 
∼ O(κ) and geometrical ∼ O(1) jumps of 𝐼𝑧

𝐼𝑧 = 2ර 𝐻 − 𝑈(𝑧, 𝜅𝑥, 𝑝𝑥)𝑑𝑧

Figure shows two trajectories calculated at small 𝜅 = 10−2, so dynamical 𝐼𝑧 jumps for these trajectories are negligible. The red 
trajectory approaches the boundary between the blue and grey areas and reflects from this boundary (reflects from the current 
sheet), whereas the black trajectory crosses this boundary twice (makes a rotation within the current sheet). Both reflections 
and crossings imply change of U shape and should correspond to 𝐼𝑧 jumps. Indeed, right panels shows 𝐼𝑧 jumps for these two 
trajectories: there is a significant 𝐼𝑧 change between the initial and final states, and these changes are much larger than 
expected dynamical jumps ∼O(κ). Therefore, there are geometrical jumps in the system described with Hamiltonian.

Ion dynamics on the plane of fast 
variables is the oscillation in a 
potential well.



• Figure shows three Poincaré maps for Hamiltonian: without 𝐵𝑚 field (σ0,1= 0), with constant 𝐵𝑚 (σ1= 0), and with 𝐵𝑚 peak (σ0= 0).
• For 𝐵𝑚 = 0 system we obtain large population of initially transient trajectories (empty space in the (κx,px) plane) and large region of 

initial 𝐵𝑚 corresponding to quasi-trapped trajectories (random dots in the (κx,px) plane). 
• The quasi-trapped trajectory region significantly larger in the system with constant 𝐵𝑚 (i.e., with σ0= 0). This is an effect of particle 

trajectory splitting in such system: due to geometrical jumps 𝐼𝑧 value of each particle regularly changes, but for each trajectory the set of 
these changes is finite and the changes are not random, i.e. there are several 𝐼𝑧 values for each trajectory, but such Iz jumps do not 
result in the particle escape from the system. 

• The most interesting Poincaré map can be seen for the system with 𝐵𝑚 peak (σ1= 0): area of quasi-trapped trajectory region significantly 
shrinks and there are a lot of particles escaping from the system due to 𝐼𝑧 geometrical jumps (empty area between the two regions filled 
with random dots). This is the new effect of particle scattering away from the system by rapid 𝐼𝑧 destruction.



𝐼𝑧 scattering 
matrix 𝐵𝑦

(a) (b)

We run ~103 trajectories from the system boundary κx=4 for each initial 𝐼𝑧 and then, when particles come back to 
this boundary, we calculate 𝐵𝑚 final. Therefore, for each initial 𝐼𝑧 we have a distribution of final 𝐼𝑧 and such 
distributions form the transformation matrix in (𝐼𝑧 initial, 𝐼𝑧 final) space. Figure  compares these matrices for 
Hamiltonian with 𝐵𝑚 = 0 (left panel) and with 𝐵𝑚 peak (right panel). In absence of 𝐵𝑚 the matrix is almost diagonal 
with small spread around 𝐼𝑧,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝐼𝑧,𝑓𝑖𝑛𝑎𝑙 (this spread is due to small dynamical jumps). For the system with 𝐵𝑚 peak 

the matrix demonstrates significant probability for large change in 𝐼𝑧 additional to the diagonal, there is a cross-
diagonal structure in the matrix.



Conclusion

• The interaction of ions with kinetic scale current sheets corresponding to 
MMS observations in the solar wind has been studied

• In this study we show how the 𝐵𝑦 peak affects ion scattering on 
discontinuities. The numerical study of trajectories showed that sharp 
jumps of quasi-adiabatic invariant occur when the ions are scattered on 
a layer with a bell-shaped field 𝐵𝑦

• The quasi-adiabatic invariant destruction should result in rapid ion 
scattering (and heating in case of electric field presence in the current 
sheet reference frame)


