

INVESTIGATING THE RELATIONSHIP BETWEEN OZONE AND WATER-ICE CLOUDS IN THE MARTIAN ATMOSPHERE

Megan Brown, Manish Patel, Stephen Lewis, Amel Bennaceur The Open University

Ozone on Mars

- Trace gas in the martian atmosphere
 <0.01%¹
- Breaks down in ultraviolet (UV) light;
 220-280nm^{1,2}
- Used to track general circulation of the atmosphere and other trace gases²
- Is anticorrelated with water vapour (can be used as a proxy)^{2,3,4}
- Varies diurnally and seasonally⁴

Composition of martian atmosphere

Gas	Volume / %
Carbon dioxide	95.32
Nitrogen	2.7
Argon	1.6
Oxygen	0.13
Carbon monoxide	0.08
Water	Trace
Ozone	Trace

<u>Aim:</u> Improve the current understanding of the chemical processes in the martian atmosphere by investigating the interaction between ozone and water-ice and heterogeneous chemistry

Method: Use the 1-dimensional Laboratoire de Météorologie Dynamique (1-D LMD)^{1,2} model to simulate a column of the atmosphere

Test 1-D model:

- Current hetero/homogeneous chemistry
- Equatorial and polar latitudes

Model: The 1-D model is a physical submodel from the LMD global climate model (GCM) suited for testing chemical processes as it is not as computationally expensive as a full GCM.

Martian atmospheric chemistry

The Open University

 (\mathbf{i})

Heterogeneous chemistry

Current models

Fig. 11. The spring to fall ($L_S = 0-180^\circ$) evolution of northern high latitude O₃ (70–74N) is presented for zonally averaged, $L_s = 2^\circ$ binned MARCI measurements (MY29-32, white symbols) and LMD GCM simulations for homogeneous (black circles) and heterogeneous (black squares) O₃ photochemistry. Neither model captures the observed spring behavior well, including an $L_s = 40-50^\circ$ secondary maximum (which exhibits the largest interannual variations among the observed MY). The heterogeneous model provides significantly improved comparison over the homogeneous model to the observed early fall ($L_S = 150-180^\circ$) O₃ increases.

The heterogeneous GCM run over-predicts ozone abundance during aphelion, while the homogeneous run under-predicts during the start of aphelion

Neither model captures the increase in ozone just before L_{s} 50° well

The heterogeneous model captures the increase in ozone from L_s 150° onwards

1-Dimensional modelling (diurnal)

The Open University

(CC)

Simulated diurnal vertical profile of ozone with heterogeneous chemistry (left), and homogeneous chemistry (right) over one sol, at latitude 0° and $L_{s} 0^{\circ}$.

Simulated diurnal vertical profile of ozone with heterogeneous chemistry (left), and homogeneous chemistry (right) over one sol, at latitude 0° and $L_{s} 0^{\circ}$.

1-Dimensional modelling (annual)

Full martian year of simulated ozone with heterogeneous chemistry (left) and homogeneous chemistry (right) at latitude 0° with 48 timesteps per sol. Time is given in solar longitude, L_s .

The Open University

1-Dimensional m form at high latitudes during the winter^{1,2}

70

60

50

altitude / km ^{© 5}

20

10

40

Heterogeneous

Water-ice clouds also

50

20

10

40

Homogeneo

Ls

The ozone abundance is a result of a feature called the Aphelion Cloud Belt; water-ice clouds form between 30-40 km during aphelion when the temperature is cold enough for water vapour to condense^{3,4}

160

Ls

200

120

240

280

320

360

1-Dimensional m form at high latitudes during the winter^{1,2}

70

Heterogeneous

Water-ice clouds also

Homogeneo

The ozone abundance is a result of a feature called the Aphelion Cloud Belt; water-ice clouds form between 30-40 km during aphelion when the temperature is cold enough for water vapour to condense^{3,4}

vmr)

*log*10(ozone /

¹Benson et al. (2010); ²Benson et al. (2011); ³Mateshvili et al. (2007); ⁴Wolff et al. (2019)

1-Dimensional m form at high latitudes during the winter^{1,2}

Water-ice clouds also during the winter^{1,2}

160

74N) is presented for zonally averaged, $L_s = 2^{\circ}$ binned MARCI measurements (MY29-32, white symbols) and LMD GCM simulations for homogeneous (black circles) and heterogeneous (black squares) O3 photochemistry. Neither model captures the observed spring behavior well, including an $L_s = 40-50^\circ$ secondary maximum (which exhibits the largest interannual variations among the observed MY). The heterogeneous model provides significantly improved comparison over the homogeneous model to the observed early fall ($L_5 = 150-180^\circ$) O₃ increases.

The ozone abundance is a result of a feature called the Aphelion Cloud Belt; water-ice clouds form between 30-40 km during aphelion when the temperature is cold enough for water vapour to condense^{3,4}.

The current heterogeneous scheme over-predicts ozone abundance (Clancy et al. 2016)

¹Benson et al. (2010); ²Benson et al. (2011); ³Ma

Next steps

- Test 1-D model at high latitudes where clouds are expected to form
- Use observed vertical profiles of water vapour to simulate a more accurate water cycle
- Develop heterogeneous reactions between hydroxyl radicals and water-ice clouds
- Validate/compare results with ozone and water-ice observations from ExoMars Trace Gas Orbiter

Summary

- Ozone is photosensitive and anti-correlated with water vapour
- Current global climate models either over- or under- predict ozone abundance depending if the model is run with heterogeneous chemistry
- This project uses a 1-D model to test and develop the heterogeneous chemistry, using ozone abundance to highlight these effects

