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Introduction

% Iberia and its offshore areas, in the southwestern tip of Europe, display a complex pattern
of seismic activity, with most known active faults slipping at low rates (< 1 mm/yr) (Fernades

et al., 2003; Noquet, 2012).

% The most active seismic cluster in Portugal is very localized (small spatial extent) and lays
on the Monchique late Cretaceous magmatic intrusion (Carrilho et al., 2004; Custédio et al.,
2015; Gonzalez-Clavijo and Valadares, 2003).

% This magmatic intrusion, in addition to creating a strong rheological contrast between the

intruded magmatic rocks and the surrounding Palaeozoic rocks, is further the locus of

abundant natural water springs (Lourenco, 1998; Veludo et al., 2017).




Introduction

% In this presentation, we re-analyze in detail the seismic data recorded by the regional
permanent seismic network, in order to better understand the relationship between seismic

activity and igneous intrusion. In particular,

ﬂ. We re-locate earthquakeh /3

using NonLinLoc and the
IGN reference model used at

~

. Then, we re-locate earthquakes
using the double difference
method implemented on hypoDD

. 4. Lastly, we compute
software: : y, We comp
Mar e da Atmosferg), |:> analysis based on I:> 1) using only catalog information :> focal rn.echanlsms for
PRISM3D, a 3D velocity waveform similarity. and, 2) joint the catalog the region.

model for the region and the
velocity model from Veludo et

Ql,, 2017. / kcross-correlation results. j

information and the waveform

;




Objectives

% Several pertinent questions remain to be answered concerning earthquakes in Monchique,
namely:

*  Why there are earthquakes in Monchique? Response to tectonic stresses?
« Is there a relationship between earthquake activity and fluid circulation?

* Do fluids play a role in facilitating slip in existing fractures? Or conversely, do existing
fractures facilitate the circulation of fluids? Or both?

e Are there hazardous faults in Monchique?

- In this region, earthquakes are generated by large faults (big structures) with small
localized rupture? Or generated by the slip of small non-oriented fractures (shear
zone)?

Purpose of this work: Clarify the relationship between seismic activity and the geological structure of the Monchique region.

:




Geological Context

% The Monchique massif i1s a structure of the upper
Cretaceous with 72 Ma (K-Ar Method) (Machintyre and
Berger, 1982).

% Miranda et al. (2009) associates the genesis of this
igneous complex with other onshore magmatic bodies
such as the alkaline masses of Sines and Sintra and
offshore intrusions such as the Fontanelas seamount all
belonging to Iberian Alkaline Igneous Province.

% A singularity of the Monchique complex, in relation to

the other massifs, is the fact that it is the only one that is
placed on Paleozoic sediments that were not affected by
the rifting associated with the opening of the North
Atlantic ocean (Gonzalez-Clavijo and Valadares, 2003;
Miranda, 2010).
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Figure 1 — Magnetic anomalies of West Iberia: magnetic data from the
compilation of Luis & Miranda (2008) and earthquakes epicenters
from Custédio et al. (2016) (blue dots). The onshore plutons
(Monchique, Sines, Sintra) have strong magnetic signatures that
extend offshore in the case of Sines and Sintra. Note that Monchique
also hosts an earthquake cluster. Several punctual magnetic highs,
such as the Fontanelas seamount, form a lineament that extends from
Sintra to the Tore seamount. [Adapted from Neres et al 2014].




Data

% We used a catalog for the Monchique region
with a total of 1487 events recorded between
01/26/2007 and 12/28/2018 by the national
seismic network (code PM), led by IPMA plus
records form a few stations belonging to other
seismic networks that operate in the region
(ES, GE, IP, LX, SS, WM) (Fig. 2a).

% We plot earthquake catalog locations,
location quality parameters and seismic
arrivals in Figure 1. As we can see:

% the earthquakes appear to align along two
directions, E-W and NNE-SSW;

% the cluster has a tapered shape in depth;

% most events occur between 10-15km depth.
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Figure 2 — IPMA earthquake catalog data for Monchique region, Portugal from 01/26/2007 to
12/28/2018 with a total of 1487 events. Map view (upper left) showing epicenters (red dots) and seismic
stations (yellow triangles). Depth profiles N-S (upper center) and E-W (bottom left). Map view (bottom
right) with events in the select study region (red dots) and all stations (blue triangles). Histograms of
RMS, azimuthal Gap, depth and magnitude (upper right) and average depth error in function of depth
(bottom center). Travel time table for P (blue dots) and S (red dots) waves (bottom right).




Earthquake Location - NonLinlL.oc

Gutenberg & Richter Law

% Using the Zmap software, we did a first analysis of the data by calculating the Gutenberg and Richter Law for
the study region. The results are presented below.
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Figure 3 — 3D view of Monchique events (left). It shows four earthquakes with magnitude larger than 3.5 (yellow stars). Cumulative rate (middle) and Maximum curvature
solution of the Gutenberg & Law Richter (right), showing that the magnitude of completeness is 0.8 and that, in this region, b-value = 1.06 = 0.04 and a-value = 3.775 + 0.001.
Note that larger events (events with mag > 3.5) occur on the edges of the cluster. Is also evident that there is a significant abundance of small-magnitude earthquakes (0.8 >
mag > 2.5) that can possibly suggest a hydrothermal control in this region.




1. Earthquake Location
with NonLinl.oc




Earthquake Location - NonLinlL.oc

Velocity Models

% For the absolute earthquake re-location with NonLinLoc, we use PRISM3D and IGN
reference model (IGN1D) shown below.
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Figure 4 — Velocity models for P and S waves. a) IGN reference model (IGN1D). Values for P (blue line) and S (red line) waves. b) PRISM3D velocity model for Iberia. Velocities values at depths of 0.5 (1% raw) and 5.5 km (2" raw) and
vertical profiles E-W and N-S with origin point in Monchique P=37.32 N, 8.55 W (3™ raw). c) Velocity model for Portugal from Veludo et al. 2017. Velocities values at depths of 1.0 and 8.0 km (1t and 2" raw) and vertical profiles E-W and N-
S with origin point in Monchique P=37.32 N, 8.55 W (3™ raw).
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Earthquake Location - NonLinlL.oc

Results

% Re-location using IGN1D.
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when compared with the IPMA original location.




Earthquake Location - NonLinlL.oc

Results

% Re-location using PRISM3D.
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Earthquake Location - NonLinlL.oc

Results

% Re-location using the velocity model from Veludo et al., 2017.
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3. Clustering Analysis




Earthquake Location

Velocity Models

% We used the SEISAN tool to perform waveform
cross-correlation analysis to search for families of

similar earthquakes.

% We used 8 high quality stations and a sub-set of
560 events that contains events with:

%  RMS <= 0.5; azimuthal Gap <= 180; magnitude >= 1.0;

and recorded in at least 7 stations

% The cross-correlation was executed for the P
phase, recorded on Z component, filtered from 3 to 15
Hz. We restricted the distance between each pair of
events to be less than 40 km and 140km to be the
maximum distance event-station. The cross-
correlation matrix is obtained by combining the

results of the cross-correlation at each station.
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Earthquake Location

Velocity Models

% A sequence of earthquakes is recognized when it has 3 or more elements with cross-correlation coefficient (CC) bigger

or equal to 0.75 in 8 stations. In total, 76 sequences were identified with only 3 of them with 10 or more events.
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earthquake families with 10 or more events, we can conclude that, for the P wave, there is no significant results for waveform similarity in this region, that is, there is no identified
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2. Earthquake Location
with HypoDD




Earthquake Location - HypoDD

% For the relative earthquake location we use the HypoDD software and the IGN reference 1D model.
From the several tests that we performed (using only catalog information and adding the waveform cross

correlation results) it was selected the tree of the considered “best” results.
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events with magnitude > 3. Note that adding the cross-correlation results improve the relative location mean uncertainties (ex, ey, ez) and we can distinguish a

clearer pattern of the earthquake distribution.
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4. Focal Mechanism
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Focal Mechanisms

% We computed the focal mechanisms for tree earthquakes of the Monchique region using the
ISOLA software: 2015-07-22, 2017-09-11 and 2019-01-31. Down below is represented the result for

the 2015-07-22 earthquake.
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Figure 11 — Centroid moment tensor solution of the 22-07-2015 event using ISOLA. a) Waveform fit between observed and synthetic displacements. b) and ¢) Source mechanism fit: left
strike-slip solution with correlation=0.9.




ocal mechanisms

MOMENT TENSOR SOLUTION Table 1 — Focal mechanisms solution of 3 events, using the polarity of the P-wave (01-31-2019) and
HYPOCENTER LOCATION (IPMA) adding the solution by inversion of the waveform or joint inversion (07-22-2015 and 09-11-2017
Origin time 20150722 04:35:27.90 events). We observed that all 3 events analyzed resulted on strike-slip faulting. The example presented
a . on -8. ep B . . . . . . . .
CENTROID on Figurel2 shows a shallow earthquake (depth = 2.5 km) with strike-slip solution that coincide with
Trial source mumber : 14 (Fixed Epicenter inversion) the surface orientation of the massif (elongated on the E-W direction).
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Strike Dip Rake | stations—Components Used-Distance
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P-axis Azimuth Plunge |pcve + - + 55
130 5 |pBDV + + + 56
T-axis Azimuth Plunge |MEST + + + 61
39 12 |evag + + + 74
—————————————————————— |encL. + + + 85
Mrz Mt Mpp 2017-09-11 3.6 25 95 40 175

0.466 0.963 -1.429
Mrt Mrp Mtp
1.460 -0.431 -6.638
Exponent (Nm): 13

2019-01-31 | 3.3 14 270 80 -20
Figure 12 — Moment tensor solution for the 2015-07-22 using ISOLA software.
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gure 13 — Vertical profiles of Vp and Vp/Vs 3D crustal tomographic models based o Figure 14 — Epicenters, re-located using the 1D IGN reference velocity model, and

local earthquakes (Veludo et al, 2017). a) Upper left: relocated hypocenters, crustal
structure and stations. Upper right: position of cross-sections. Vertical exaggeration 5:1.
[Adapted from Veludo et al., 2017]. The earthquakes are located along a low-velocity
anomaly, directly south of a fast anomaly, which possibly corresponds to the igneous on the southern border of the intrusion.
Cretaceous intrusion.

geologic map from Gonzalez-Clavijo and Valadares (2003). The surface expression
of the igneous intrusion is little affected by faulting. Natural thermal springs exist

% Note that the epicenters are concentrated on the north section of the massif and its distribution coincide with the

surface orientation of the magmatic intrusion.

.




Conclusions

% The b-value > 1 indicates that there is a significant abundance of small-magnitude earthquakes, that
can possibly suggest a hydrothermal control. However, the linear fit only adjusts the small earthquakes,

and the number of moderate magnitude earthquakes is larger than expected from the GR law.

% The GR analysis may suggest that small earthquakes are controlled by fluids movement and the larger

events are associated with tectonic deformation.

% The moderate magnitude earthquakes occur on the edges of the Monchique cluster that nucleate at 10-
15 km depth.

% From the absolute relocations results, we can conclude that independently of velocity model used,

earthquakes in Monchique align mostly along two main directions, E-W and NNE-SSW, coinciding with

the surface orientation of the magmatic intrusion.




Conclusions

% Observing the relative locations results we can see that in this region,

1. The E-W alignment reveal to be dominant and appears to be to fragmented in two segments: one with ENE-WSW
direction and other orientated WNW-ESE.

1. The NNE-SSW alignment became diffuse and its north section disappeared.

% Up to now, the waveform similarity analysis has not yet yielded significant results. This could imply
that earthquakes in Monchique occur in small fractures indicating the possible presence of a zone of

fracture (shear zone).

% Focal mechanisms indicate dominantly strike-slip faulting. Fault planes coincide with the favored

directions of the earthquake lineations, but also with the regional tectonic and faulting directions.

The results suggest that the Monchique igneous intrusion is little deformed (a hypothesis is that it acts as a barrier to tectonic
deformation), with seismic and hydrothermal activity concentrating on its northern border.

’
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