
Models Bridging Subduction and Earthquake Dynamics 
Show Fault Strength as a Strain-average Quantity

Ylona van Dinther

Department of Earth Sciences, Utrecht University

© van Dinther. All rights reserved



EGU2020: van Dinther © van Dinther. All rights reserved

Aim

What strength / friction values are appropriate across various scales?

Geodynamic modelers interested in simulating subduction and plate tectonics: μeff,static < ~0.05 

Earthquake modelers interested in frictional sliding typically use Byerlee’s friction (μ ~ 0.6-0.85): μeff,static > ~0.5
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Are these results as far apart as they seem? I show that 
» Recent cross-scale and earthquake models converge perspectives 
» Analytical considerations constrained by observations and laboratory experiments suggest μeff,char is about 0.02 - 0.3 

µeff = 1� Pf

P
= 1� �
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Long-standing debate: How weak or strong? Why?
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Strong 
μeff ~ 0.5 

𝝈 ~ O(2) MPa 

Weak 
μeff ~ 0.05 

𝝈 ~ O(1) MPa 

Absent local heat flow anomaly 
[e.g., Lachenbruch and Sass, 1992] 

Stress field rotation & z-indep. stress drop 
[e.g., Hardebeck, 2015] 

Differential stress estimates  
[e.g., Seno, 2009] 

Sustain subduction in models  
[e.g., Zhong et al., 1998; Duarte et al., 2015] 

…

Laboratory experiments  
(e.g., Byerlee, 1978) 

In-situ stress measurements  
 (e.g., Brody et al., 1997) 

Dip orientation of earthquakes on (re-activated) faults 
(e.g., Sibson and Xie, 1998) 

Sustain mountains 

…

Data: Behr & Platt, EPSL, 2011

Copyrighted graph from:



EGU2020: van Dinther © van Dinther. All rights reserved

I. Revisit arguments
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Strong 
μeff ~ 0.5 

𝝈 ~ O(2) MPa 

Weak 
μeff ~ 0.05 

𝝈 ~ O(1) MPa 

Absent local heat flow anomaly 
[e.g., Lachenbruch and Sass, 1992] 

Stress field rotation & z-indep. stress drop 
[e.g., Hardebeck, 2015] 

Differential stress estimates  
[e.g., Seno, 2009] 

Sustain subduction in models 
[e.g., Zhong et al., 1998; Duarte et al., 2015]

…

Laboratory experiments 
(e.g., Byerlee, 1978)

In-situ stress measurements  
 (e.g., Brody et al., 1997) 

Dip orientation of earthquakes on (re-activated) faults 
(e.g., Sibson and Xie, 1998) 

Sustain mountains

…

Data: Behr & Platt, EPSL, 2011

Copyrighted graph from:
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II. Estimate what mechanisms are most important
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Absent local heat flow anomaly 
[e.g., Lachenbruch and Sass, 1992] 

Stress field rotation & z-indep. stress drop 
[e.g., Hardebeck, 2015] 

Differential stress estimates  
[e.g., Seno, 2009] 

Sustain subduction in models  
[e.g., Zhong et al., 1998; Duarte et al., 2015] 

…

What weakening mechanism is most important? 

High pore fluid pressures 
Low static friction  
Large dynamic earthquake weakening 

Laboratory experiments  
(e.g., Byerlee, 1978) 

In-situ stress measurements  
 (e.g., Brody et al., 1997) 

Dip orientation of earthquakes on (re-activated) faults 
(e.g., Sibson and Xie, 1998) 

Sustain mountains 

…
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Rocks are almost always strong, but not at coseismic slip rates where most strain occurs

High-speed lab experiments reveal enhanced dynamic weakening [e.g., Di Toro et al., Nature, 2011]     
Low slip rates μeff ~ 0.7 
High coseismic slip rates μeff ~ 0.15

3

Static friction

Dynamic friction

� = 1� µd

µs
dynamic weakening γ ~ 0.79}

99.9% of space and time 

Large part strain
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Models simulating both long- and short-term dynamics

4

Included dynamic weakening in geodynamic models [Seismo-Thermo-Mechanical; STM; van Dinther et al., 2013a,b] 

Conservation of mass,  
momentum and heat

Visco-elasto-plastic rheology

>> Spontaneous state and geometry 
                      e.g., stress, temperature, viscosity, fluid distribution

>> Spontaneous rupture nucleation, propagation and arrest
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TM: Gerya and Yuen, PEPI, 2007; STM: van Dinther et al., 2013a,b, 2014

Small time steps 
+ rate-dep. friction 
+ inertia
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Need fluid and dynamic weakening in cross-scale models
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Need fluid weakening to allow for  
subduction along shallow megathrust

Dynamic weakening
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For subduction, mountain building, and reasonable earthquake characteristics need ~0.005 <  μeff, static < ~0.125
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But not too much! Still need interseismic 
locking to build stresses to generate events

if locking

Need dynamic weakening to generate events
� = 1� µd

µs
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Very weak @ very limited space or time does not mean weak throughout

Temporarily weak (~10 MPa min.) and continuously overpressurized megathrust does not mean weak throughout lithosphere! 

Could still build mountains

6

max. megathrust σ’II  ~ 40 MPa, 
but elsewhere still almost GPa 

μeff, static = 0.05
MPa

GPa
~lithostatic pressures

event

1 GPa
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For equations I refer to  van Dinther, in prep. 

Long-term fault strength as a strain-average quantity

» Rocks are “always” strong, but weak during dynamic slip, where most strain occurs → How do we account for that in long-term models? 
Consider friction as a strain-average quantity: 

Time-integrated mechanical energy dissipation

7

>> Derive constraints from observations and laboratory experiments
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Long-term fault strength as a strain-average quantity

» Rocks are “always” strong, but weak during dynamic slip, where most strain occurs → How do we account for that in long-term models? 
Consider friction as a strain-average quantity, since 

Time-integrated mechanical energy dissipation 

Mechanical consistency of energy and strain for unresolved dynamics requires  

With stress limited by strength (parameters) and  

Long-term average, effective friction is strain-averaged as 

7

H =
Z

�ij(d)"̇ij(d)dt +
Z

�ij(s)"̇ij(s)dt

�II(c) =
"II(d)

"II(d) + "II(s)
�II(d) +

"II(s)

"II(d) + "II(s)
�II(s)

� =
M

P

0

M0e
seismic coupling 

µeff(c) = �(1� �)(1� �)µ(s) + (1� �)(1� �)µ(s)

� = 1� µd

µs
dynamic weakeningpore fluid pressure ratio � =

Pf

P

>> Derive constraints from observations and laboratory experiments
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Long-term, effective friction for pore fluid pressure vs. dynamic weakening
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Best guess: 
μs = 0.7 [e.g., DiToro et al., Nature, 2011] 
𝛘 = 0.3 [e.g, McCaffrey, BSSA,1997]

Hydrostatic
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Feasible from data

Feasible long-term friction values from data:
~ 0.02 - ~0.3

� =
Pf

P

� = 1� µd

µs
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What do we need for long-term weak faults (μeff,c < 0.05)? 
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What is needed for subduction to occur in geodynamic models?  (i.e., μeff,c < 0.05; e.g., Zhong et al., 1998; Buiter et al., 2001; Sobolev & Babeyko, 2005; Duarte et al., 2015) 

Hydrostatic
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» Dynamic weakening can bring pore fluid pressures in more acceptable range, but still requires largely over-pressurized megathrust

Best guess: 
μs = 0.7 [e.g., DiToro et al., Nature, 2011] 
𝛘 = 0.3 [e.g, McCaffrey, BSSA,1997]
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What do we need for long-term weak faults (μeff,c < 0.05)? 

9

Best guess from data 
μs = 0.7 [e.g., DiToro et al., Nat., 2011] 
𝛘 = 0.3 [e.g, McCaffrey, BSSA,1997]

Weak fault material 
μs = 0.2 [talc]
𝛘 = 0.3 [e.g, McCaffrey, BSSA,1997]

Maximum seismic coupling 
μs = 0.7 [e.g., DiToro et al., Nat., 2011] 
𝛘 = 1.0 [only S. Chile currently]

» Dynamic weakening can bring pore fluid pressures in more acceptable range, but still requires largely over-pressurized megathrust

Most extreme case - not realistic 
μs = 0.2 [talc]
𝛘 = 1.0 [only S. Chile currently]
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What do we need for long-term weak faults (μeff,c < 0.05)? 
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( or a different weakening  
mechanism is missing )

( or long-term models incorrect )

highly over-pressurized faults 
unless full seismic coupling

Very extreme case 
μs = 0.5 [sediments] 
𝛘 = 0.98 [only S. Chile currently]

» Dynamic weakening can bring pore fluid pressures in more acceptable range, but still requires largely over-pressurized megathrust



EGU2020: van Dinther © van Dinther. All rights reserved

Weak fault material 
μs = 0.2 [talc]
𝛘 = 0.3 [e.g, McCaffrey, BSSA,1997]

Alternatively avoid fluid over-pressurized megathrusts through higher μeff, c

10

» IF subduction with realistic characteristics can occur in long-term geodynamic models for

More reasonable weak case 
μs = 0.5 [sediments]
𝛘 = 0.45

» I have not seen this

μeff,c ~ 0.1 for statically very weak megathrust (too weak)

μeff,c ~ 0.2-0.3 for weak, but potentially reasonable megathrust
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Relative effectiveness of weakening mechanisms

11

Geodynamic modelsDouble Reduces μeff (char) at

reference values by

Reduces μeff (char) at 

full seismic coupling by
1. pore fluid pressure 67%

2. static friction 50%

3. seismic coupling 47%

4. friction drop 20% 50%

» Most effective way to remove highly over-pressurized faults remains reducing static friction (not earthquake slip)
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Apparently weak faults also work better for dynamic earthquake ruptures (DR)

Lab-observed large strength drops allowed in slip/rate-weakening DR models through distinctly increased pore fluid pressures

12

�⌧ ⇠ (µs � µd)(1� �)

Ulrich et al., Nat. Comm., 2019  
Strongly rate-dep. friction, γ ~ 0.8 

2016 M7.8 KAIKOURA earthquake only jumps for large fluid pressures (λ ~0.66)

» Strain occurs around μeff  <= 0.1
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Models across scales support weak(er) megathrusts
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Best guess: 
μs = 0.7 [e.g., DiToro et al., Nature, 2011] 
𝛘 = 0.3 [e.g, McCaffrey, BSSA,1997]
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Feasible from data

STM models

DR Kaikoura

DR Sumatra

Geodynamic models

» Recent modeling results show that long- and short-term results are not so far apart as they seem

DR Sumatra: Madden et al., AGU, 2018 

Feasible long-term friction values from models:
μeff,c  ~ 0.02 - ~0.20
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Conclusions 

Models at, and across, all time scales support (somewhat) weak megathrusts 
» μeff,c  ~ 0.02 to 0.2

Long-term strength is a strain-average quantity 
Described by pore fluid pressure ratio, static friction, seismic coupling, and dynamic friction 

Analytical considerations constrained by data and laboratory experiments support (somewhat) weak megathrusts 
» μeff,c  ~ 0.02 to 0.3 

  
Megathrusts are mainly weak due to distinctly to highly over-pressurized pore fluids 

» Geodynamic models not resolving earthquake dynamics are within their right within bold range (and can justify choice)
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