
<text><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></text>	.2°		
<text></text>		TTTTTTTT	15
both observational and modelling challenges. The observational challenge is obvious: the faults are under water and to understand their interseismic obvious: the faults are under water and to understand their interseismic underwater geodetic measurements, alongside those on land. Up to now two such underwater studies have been conducted and they suggest that the segment to the south of istanbul zone (so-called Central segment) is locked while some creep is probably going on along the neighborin so far demonstrate that the block-based slip investors and those that out consider a single fault (with the same geometry is one of the boundaries of the blocks) give significantly different results. In this study we approach the problem using three methodologies; block models with spatially non-varyin strains within individual blocks, a boundary element approach and continuum kinematic approach. Although the block model can buy spatially varying strains, the inversion results from these with the state continuum kinematic approach. Although the block model can buy construct a formulation to correlate the results from these with the state solutioned using focal mechanism summations. $\sum_{conts} \sum_{\alpha,\beta,A_{lt}} (e_{dt}^{fit} e_{\alpha}^{chs}) V_{\alpha\beta}^{-1}_{A} ((e_{dt}^{fit} - e_{\alpha}^{phs}) + \sum_{points} \sum_{\alpha,\beta,A_{lt}} (e_{dt}^{fit} e_{\alpha}^{chs}) V_{\alpha\beta}^{-1}_{A} (e_{dt}^{fit} - e_{\alpha}^{phs}) + \sum_{points} \sum_{\alpha,\beta,A_{lt}} (e_{dt}^{fit} e_{\alpha}^{chs}) V_{\alpha\beta}^{-1}_{A} (e_{dt}^{fit} - e_{\alpha}^{phs}) + \sum_{points} \sum_{\alpha,\beta,A_{lt}} (e_{dt}^{fit} e_{\alpha}^{chs}) V_{\alpha\beta}^{-1}_{A} (e_{dt}^{fit} - e_{\alpha}^{phs}) + \sum_{points} \sum_{\alpha,\beta,A_{lt}} (e_{dt}^{fit} - e_{\alpha}^{phs}) + (e_{dt}^{chs}) + (e_{d$		Introduction	
General aim of this method is minimize the following penalty function: $\sum_{cetls} \sum_{\alpha\beta,\lambda\mu} (\hat{\varepsilon}_{\alpha\beta}^{jit} \cdot \hat{\varepsilon}_{\alpha\beta}^{obs}) V_{\alpha\beta,\lambda\mu}^{-1} (\hat{\varepsilon}_{\lambda\mu}^{fit} - \hat{\varepsilon}_{\lambda\mu}^{obs}) + \sum_{points} \sum_{\alpha\beta} (v_x^{fit} - v_{\alpha}^{obs}) V_{\alpha,\beta}^{-1} (v_{\beta}^{fit} - v_{\beta}^{obs})$ where $V_{\alpha\beta,\lambda\mu}$ and $V_{\alpha,\beta}$ are the data variance-covariance matrices for the average strain rates and the geodetic velocity measurements respectively, and the subscripts α , β , λ , μ range over longitude ϕ and latitude θ In this approach we used grid system, at the knotpoints of which, rotation functions $W_{(\chi)}$ are defined. A suitable spatial distribution of these $W_{(\chi)}$ will correspond to the best-fitting strain rate field satisfying the GPS observations. Fig.1. Velocities derived from Beaven and Haines method	1 °	both observational and modelling challenges. The observational challen obvious: the faults are under water and to understand their interset behavior (creeping versus locked) requires expensive and logistically dif- underwater geodetic measurements, alongside those on land. Up to two such underwater studies have been conducted and they suggest the segment to the south of Istanbul zone (so-called Central segmer locked while some creep is probably going on along the neighbor segment to the west. Given these two important findings, the distribution problem is still non-trivial due to the fact that our experim so far demonstrate that the block-based slip inversions and those that consider a single fault (with the same geometry as one of the boundari the blocks) give significantly different results. In this study we approach problem using three methodologies: block models with spatially non-va strains within individual blocks, a boundary element approach ar continuum kinematic approach. Although the block model does not spatially varying strains, the inversion results from the block model ca used as an input to model strain field in the vicinity of the fault, construct a formulation to correlate the results from these with the s	ge i ismi ficul now tha nt) i orin sli nent onl orin sli nent onl orin sli nent wi vi n giv nb wi
General aim of this method is minimize the following penalty function: $\sum_{cetls} \sum_{\alpha\beta,\lambda\mu} (\hat{\varepsilon}_{\alpha\beta}^{jit} \cdot \hat{\varepsilon}_{\alpha\beta}^{obs}) V_{\alpha\beta,\lambda\mu}^{-1} (\hat{\varepsilon}_{\beta\mu}^{fit} - \hat{\varepsilon}_{\lambda\mu}^{obs}) + \sum_{points} \sum_{\alpha\beta} (v_x^{fit} - v_{\alpha}^{obs}) V_{\alpha,\beta}^{-1} (v_{\beta}^{fit} - v_{\beta}^{obs})$ where $V_{\alpha\beta,\lambda\mu}$ and $V_{\alpha,\beta}$ are the data variance-covariance matrices for the average strain rates and the geodetic velocity measurements respectively, and the subscripts α , β , λ , μ range over longitude ϕ and latitude θ In this approach we used grid system, at the knotpoints of which, rotation functions $W_{(\chi)}$ are defined. A suitable spatial distribution of these $W_{(\chi)}$ will correspond to the best-fitting strain rate field satisfying the GPS observations. Fig.1. Velocities derived from Beaven and Haines method			
General aim of this method is minimize the following penalty function: $\sum_{cetls} \sum_{\alpha\beta,\lambda\mu} (\hat{\varepsilon}_{\alpha\beta}^{jit} \cdot \hat{\varepsilon}_{\alpha\beta}^{obs}) V_{\alpha\beta,\lambda\mu}^{-1} (\hat{\varepsilon}_{\beta\mu}^{fit} - \hat{\varepsilon}_{\lambda\mu}^{obs}) + \sum_{points} \sum_{\alpha\beta} (v_x^{fit} - v_{\alpha}^{obs}) V_{\alpha,\beta}^{-1} (v_{\beta}^{fit} - v_{\beta}^{obs})$ where $V_{\alpha\beta,\lambda\mu}$ and $V_{\alpha,\beta}$ are the data variance-covariance matrices for the average strain rates and the geodetic velocity measurements respectively, and the subscripts α , β , λ , μ range over longitude ϕ and latitude θ In this approach we used grid system, at the knotpoints of which, rotation functions $W_{(\chi)}$ are defined. A suitable spatial distribution of these $W_{(\chi)}$ will correspond to the best-fitting strain rate field satisfying the GPS observations. Fig.1. Velocities derived from Beaven and Haines method		a) Continuum Model	b
$\sum_{cells} \sum_{\alpha\beta,\lambda\mu} (\varepsilon_{\mu}^{fl} - \varepsilon_{\alpha\beta}^{obs}) V_{\alpha\beta}^{e}_{\alpha\beta,\mu} (\varepsilon_{\mu}^{fl} - \varepsilon_{\lambda\mu}^{obs}) + \sum_{points} \sum_{\alpha\beta} (v_{\chi}^{fl} - v_{\alpha}^{obs}) V_{\alpha\beta}^{-1} (v_{\beta}^{fl} - v_{\beta}^{obs})$ where $V_{\alpha\beta,\lambda\mu}$ and $V_{\alpha,\beta}$ are the data variance-covariance matrices for the average strain rates and the geodetic velocity measurements respectively, and the subscripts α , β , λ , μ range over longitude ϕ and latitude θ In this approach we used grid system, at the knotpoints of which, rotation functions $W_{(\chi)}$ are defined. A suitable spatial distribution of these $W_{(\chi)}$ will correspond to the best-fitting strain rate field satisfying the GPS observations. Fig.1. Velocities derived from Beaven and Haines method		General aim of this method is minimize the following penalty	pl
where $v_{\alpha\beta,\lambda\mu}$ and $v_{\alpha,\beta}$ are the data variance-covariance matrices for the average strain rates and the geodetic velocity measurements respectively, and the subscripts α , β , λ , μ range over longitude ϕ and latitude θ In this approach we used grid system, at the knotpoints of which, rotation functions $W_{(x)}$ are defined. A suitable spatial distribution of these $W_{(x)}$ will correspond to the best-fitting strain rate field satisfying the GPS observations. Fig.1. Velocities derived from Beaven and Haines method		$ \begin{split} & \sum_{cells} \sum_{\alpha\beta,\lambda\mu} (\dot{\varepsilon}_{\alpha\beta}^{fit} - \dot{\varepsilon}_{\alpha\beta}^{obs}) V_{\alpha\beta,\lambda\mu}^{-1} (\dot{\varepsilon}_{\lambda\mu}^{fit} - \dot{\varepsilon}_{\lambda\mu}^{obs}) + \\ & \sum_{points} \sum_{\alpha\beta} (v_x^{fit} - v_{\alpha}^{obs}) V_{\alpha,\beta}^{-1} (v_{\beta}^{fit} - v_{\beta}^{obs}) \end{split} $	
which, rotation functions $W_{(x)}$ are defined. A suitable spatial distribution of these $W_{(x)}$ will correspond to the best-fitting strain rate field satisfying the GPS observations. Fig.1. Velocities derived from Beaven and Haines method	.0°	for the average strain rates and the geodetic velocity measurements respectively, and the subscripts α , β , λ , μ range	in
		which, rotation functions $W_{(x)}$ are defined. A suitable spatial distribution of these $W_{(x)}$ will correspond to the best-fitting	<
40° 39°		Fig.1. Velocities derived from Beaven and Haines method	
40° 40° 39°			
10 mm/y			
	39°	Grids of Continuum Model - 10 mm/y	Denth[km]
			27

