

Integrating energy sectors in a state-resolved energy system model for Australia

Dr. Tino Aboumahboub^a, Prof. Dr. Robert Brecha^{a,b}, Dr. Andreas Geiges^a, Dr. Matthew Gidden^{a,c}, Himalaya Bir Shrestha^a, Dr. Bill Hare^a

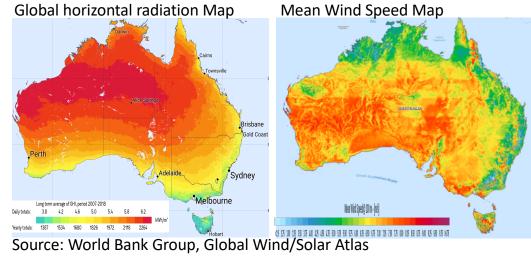
^a Climate Analytics gGmbH, Berlin, Germany

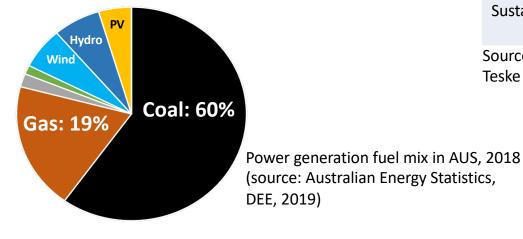
^b Physics Department, Renewable and Clean Energy Program, Hanley Sustainability Institute, University of Dayton, Dayton, USA ^c International Institute for Applied Systems Analysis, Laxenburg, Austria

> European Geosciences Union General Assembly, Session Spatial and Temporal Modelling of Renewable Energy systems, Online, 7 May 2020

tina.aboumahboub@climateanalytics.org

Contents

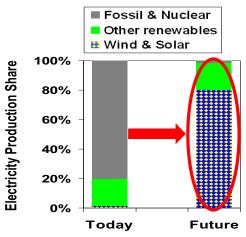

- Motivation
- Methodology
- Scenario narrative
- Model results
- Summary and Outlook


Motivation

Australia is characterized by an extensive, untapped renewable potential

Current power generation fleet is dominated by coal and natural gas (80% share in total) with broad state-level discrepancies

Resource	Potential		
Wind onshore	23,990 GW		
Utility PV	122,348 GW		
Rooftop PV	178 GW		
Sustainable biomass	417 TWh (73 TWh for electricity		
Courses Debents at al. 2010 Table at al. 2010			


Sources: Roberts et al., 2019; Teske et al., 2019; Teske et al., 2016

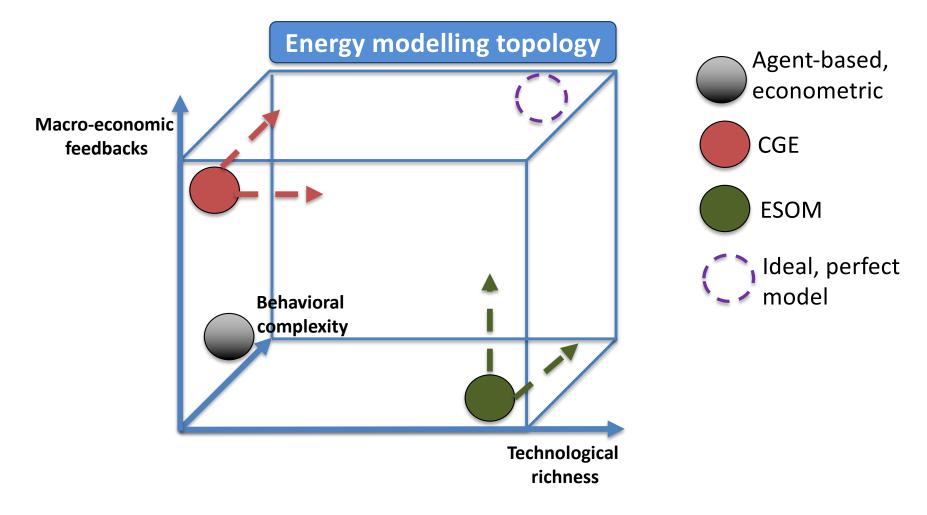
Motivation

- Achieving the Paris Climate Agreement Goals requires substantial changes to the energy system globally with OECD regions at the forefront
- How to ensure security of supply with increasing shares of intermittent renewable sources?
- Proposed solutions to fill the flexibility gap, making the full renewable supply system achievable:
 - Cross-sectoral integration: Broad (direct) electrification of entire energy system, extensive use of renewable-based synthetic fuels/hydrogen as a fuel across all energy sectors (indirect electrification)
 - Use of hydrogen for long-term storage of renewable power
 - Cross-regional integration: Reinforcement of transmission grid
- → Central question: What is the cost-optimal configuration of a renewable-based Australian energy system in line with the PA temperature target and the transformation pathway?

Introduction

Long-term energy system modelling

- Energy policy across the globe faces challenges
- Securing access to energy and mitigating climate change are key policy goals
- Mitigation efforts & energy system infrastructure require long-term planning
- Several complex issues needs consideration (energy/climate policies, economic growth, technology development, resource potential/reserves, flxibility gap at high VRE* shares, storage needs)


- Energy system optimization models (ESOM) as long-term energy planning tools provide essential insights into these challenges
- Key Characteristics, advantages of ESOM:
 - ✓ high level of detail related to energy sectors, technologies
 - ✓ High temporal resolution
 - High geographical detail: moving from global, regional modelling to individual countries and regions
 - ✓ assessing energy system integration impacts of VERS and system adaptation needs: storage/ transmission extension

^{*} VRE: Variable Renewable Energy Sources

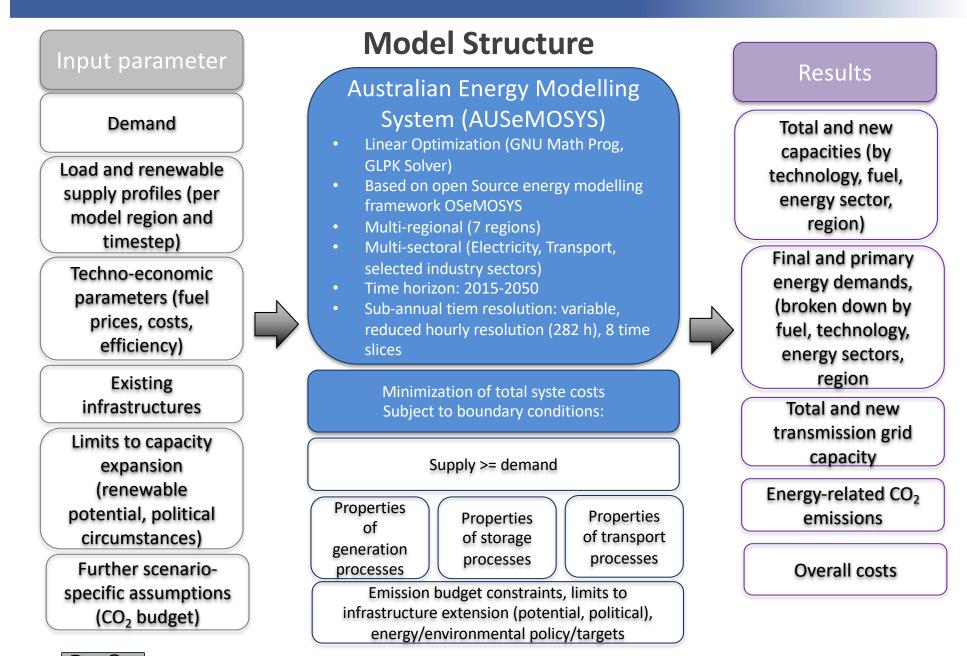
Three-dimensional assessment of energy-economy models

Source: Based on Hourcade et al. (2006)

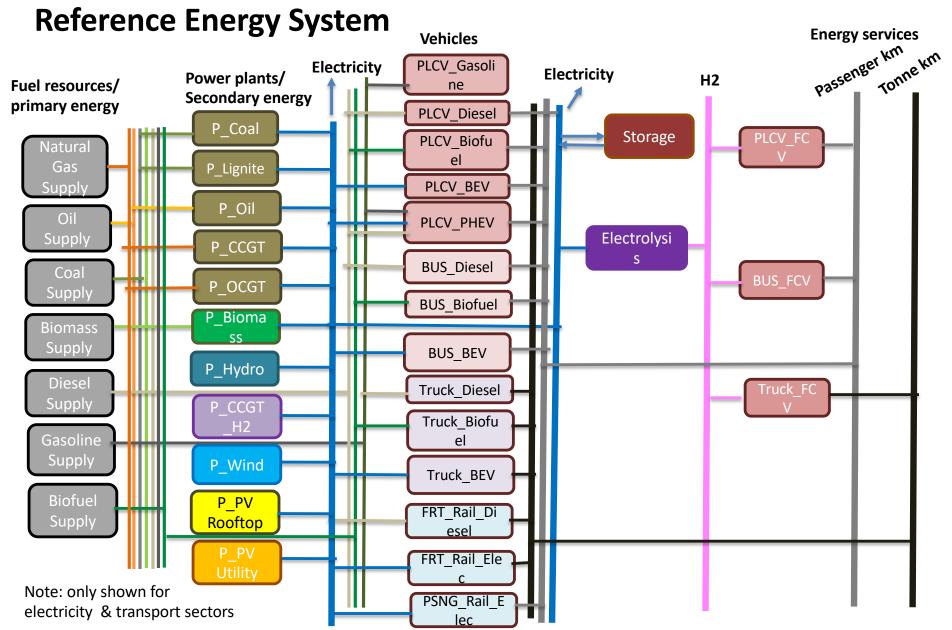
Methodology

OSeMOSYS (Open Source Energy Modelling System)

- OSeMOSYS is a full-fledged systems optimization model for medium, longterm energy planning
- Deterministic, linear cost-optimization model
- Paradigm comparable to TIMES and MESSAGE
- Open source \rightarrow no upfront financial investment
- Less significant learning curve and time commitment to build and operate
- Provides a flexible framework to build technological features of various interacting energy sectors and regions →
 allows a systematic analysis of

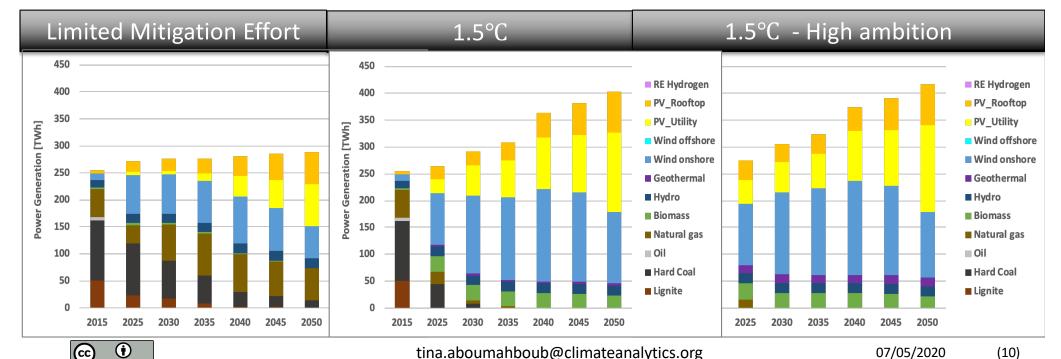

implications of sector-coupling and cross-border integration

Methodology

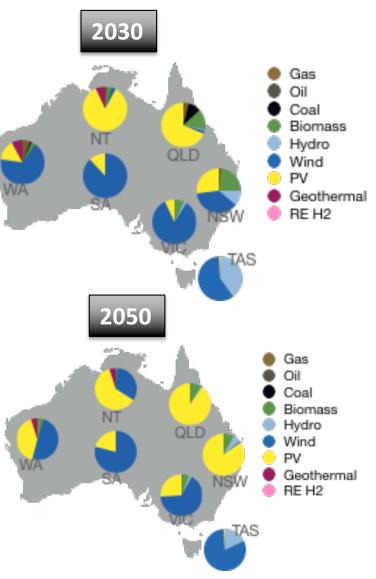


(7)

Methodology

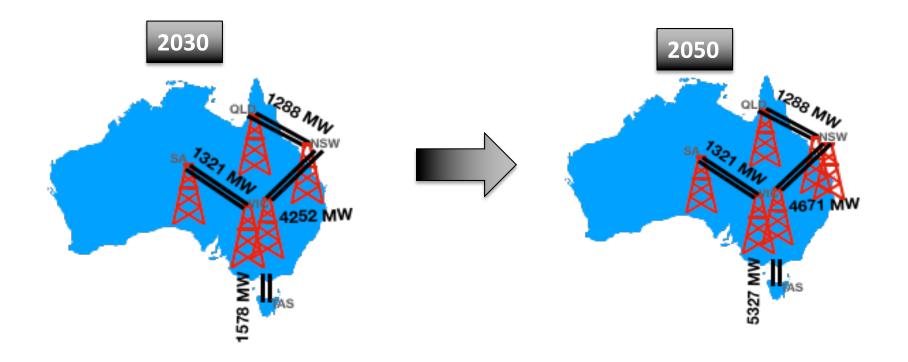

	Limited mitigation effort	1.5°C	1.5°C - High ambition
Global climate target and Australia's contribution		480 GtCO ₂ (2018-2050) based on IPCC SR1.5 AUS: 3.6 GtCO ₂ (2018- 2050)	440 GtCO2 (2018-2050) based on IPCC SR1.5 AUS: 3.2 GtCO ₂ (2018- 2050)
Energy system: Energy technology change	Slow: Dominance of fossil fuel/emission-intensive technologies similar as today, thus the extensive renewable potential in Australia remains untapped	Rapid: Renewable transition dominates the transformation pathway with low/zero emission (renewable) technologies achieve market competitiveness at a high pace. This is supported by ambitious costs declines, high efficiency and expolitation of fuel switch potential as well as market penetration of novel technologies.	
Energy system: sectoral integration	No/very limited level of cross-sectoral integration	Strong electrification of end-use sectors (PtG, H2Steel, H2Cement, BEV, FCEV)	
Nation-wide interconnnectivity and inter-regional power trade	National power transmission network as of today	Constrained reinforcement of NEM-wide trans grid (maximum annual capacity growth rate of 10% p.a.)	

Development of total electricity production fuel mix


- Electricity demand for electrification of coupled end-use sectors under stringent CO₂ budget, leads to doubling of final electricity demand.
- In "1.5°C" scenario, RE share reaches to 100% by 2040 (95% in 2030); "1.5°C higher ambition" achieves full RE supply in 2030.
- Large investments into wind and solar PV play a dominant role in decarbonizing Australia's energy system.
- 87-89% of produced electricity in 2050 comes from wind and solar energy complemented by smaller contributions from geothermal, hydro, and biomass.

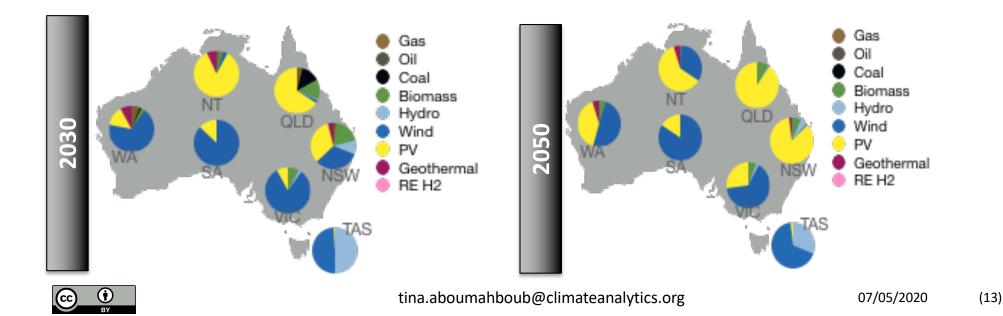
Regional distribution of power production mix in 1.5°C Scenario

- All regions move towards full renewable supply
- Even states with dominating share of coal today (NSW, QLD, VIC) incorporate a renewable share of 87% -100% by 2030
- In WA and NT, renewable share rises to 93-98% by 2030
- The VRE (variable RE) mix optimized according to regional potentials
- High wind shares in TAS, VIC, SA
- Solar PV dominating in NSW, QLD also in WA, NT



Inter-regional power transmission capacities in 1.5°C Scenario

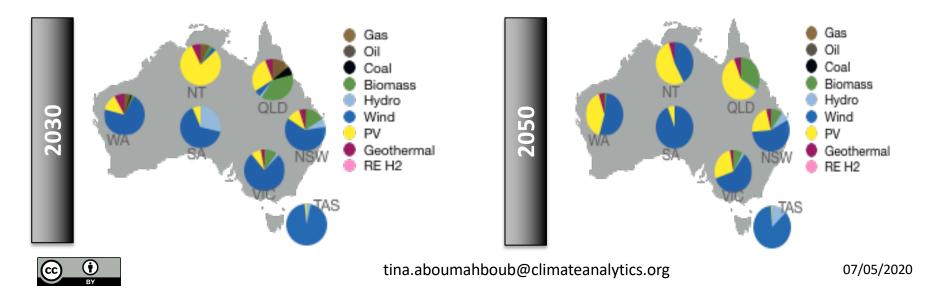
- Extensive reinforcement of power transmission grid required to balance the VRE supply
- Total cross-regional transmission capacity doubles by 2030 and almost tripling in 2050



Sensitivity cases

Low interconnection case: reducing maximum TR capacity growth rate to 5% p.a. Rest of assumptions remain the same as "1.5°C" scenario.

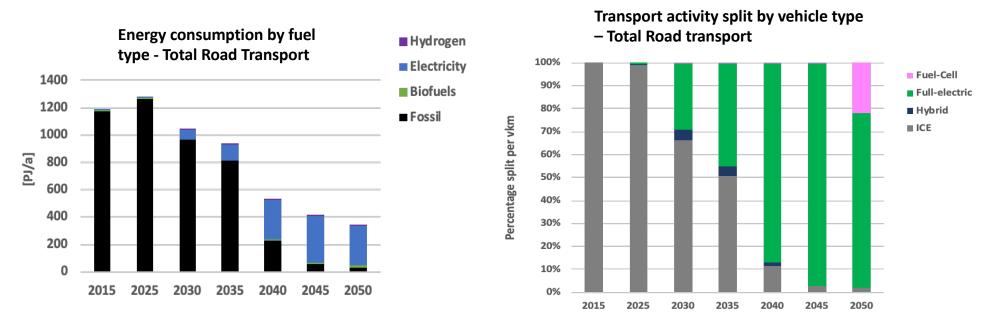
- Transmission grid in high VRE scenarios is mainly applied to smoothen wind power variability in spatial dimension
- Wind energy has a systematic disadvantage in low-connection cases
- Cost-optimal VRE mix (% of total VRE production): Wind 59% & PV 41% (2030); Wind 32% & PV 68% (2050) (*core scenario: Wind: 64% & PV: 36% (2030) Wind: 37% & PV: 63% (2050).*



(14)

Sensitivity cases

Higher storage and solar PV costs


- Costs assumptions have no impact on total renewable share → full RE supply is still achieved in 2040 (95% renewable share in 2030) as stringent CO₂ budget acts as the major driver of decarbonization.
- Solar PV share in total produced electricity reduces to 14% by 2030 (28% in "1.5°C" scenario), wind share increases to 58% (50% in "1.5°C" scenario).
- Share of non-VRE sources including biomass and geothermal energy also slightly increase in comparison.
- Cost-optimal VRE mix (% of total VRE production): Wind 81% & PV 19% (2030); Wind 72% & PV 28% (2050)

Low-carbon transformation of linked energy sectors - Mobility sector

- "1.5°C" scenario: Energy use decreases significantly (60% reduction in 2040 rel. to 2015). Major driving factor is increase of EVs, using siginifcantly less energy per km driven compared to conventional ICEs.
- Also fuel mix undergoes a significant transition: in particuluar use of electricity also biofuels and hydrogen rises significantly over the modeled horizon, replacing fossil fuels.
- Share of EVs (BEV, PHEV) in road transport rises to 33% in 2030; 88% by 2040 and 97% by 2045. Hydrogen phases in by 2050, accounting for 22% of road transport activity.

Summary and Outlook

- ✓ Multi-regional, multi-sectoral energy system optimization model developed case of Australia.
- ✓ The model applied for scenario analysis of deep decarbonization of Australia's energy system inline with the Paris Agreement climate target.

Next steps...

- Modelling of further sector coupling options: Linking electricity and industry sectors (steel, cement, etc.)
- Further scenario analysis

