EGU2020-GM12/EOS6.30 - Essential variables influencing geodiversity - 06/06/20

GIS and geomatics for hydrogeodiversity assessment of glaciated mountains: examples from the Western Alps (Italy) and the Coast Mountains (Canada)

Luigi Perotti¹, Manuela Lasagna¹, Gilda, Carraro¹

Cristina Viani¹, Federico Tognetto¹, Domenico De Luca¹

Università degli Studi di Torino

Dipartimento di Scienze della Terra Università degli Studi di Torino

GeoS/TLab GIS & Geomatics Laboratory

(1) (2) University of Torino, Earth Sciences Dept., Italy Minerva Intelligence, Vancouver, BC, Canada

Gioachino Roberti², Marco Giardino¹

luigi.perotti@unito.it

Geological and geomorphological constrains to mountain geodiversity

Structure of the contribution

- 1. FOREWORD Theoretical issues related to both spatial and temporal dimensions of natural components of the geo-environmental system
- METHODS Systematization of knowledge related to geodiversity of mountains (issues related to scale of analysis and representation)
- 3. RESULTS GIS mapping and qualitativequantitative assessment of geodiversity (Examples from glaciated/deglaciated mountains of Europe and Canada)
- 4. DISCUSSION Classification and presentation of components of mountain geodiversity based on their spatial and temporal dimension, and the related geomatics tools

Û BY

Università degli Studi di Torino

Dipartimento di Scienze della Terra Università degli Studi di Torino

GeoS/TLab GIS & Geomatics Laboratory

Geological, geomorphological, ..., (E.g. many) constrains to mountain (hydro)Geodiversity

Monte bianco – Veny Valley

1800m

t OBENIORD

Geodiversity:

the natural range (diversity) of geological (rocks, minerals, ...), geomorphological (landforms, topography, processes), soil and hydrological features.

3500m

It includes their assemblages, structures, systems and contributions to landscapes

Glocal perspective

Atmosphere

Litosphere

Hydro(Cryo) sphere

Biosphere

Conceptual framework at a global scale, field mapping and remote sensing at regional and local scales

Western Alps, Piemonte Region, Italy

Coast Mountains, BC, Canada

The study area is on the **Mount Meager Volcanic** Complex (MMVC), 200 km N of Vancouver

 (\mathbf{i})

BY

(cc

Structure of the presentation

1. FOREWORDS on Geodiversity Glocal Approach

- METHODOLOGY Assessment of regional geodiversity connected to hydro(cryo)sphere by means of: 1) base data acquisition and mapping; 2) qualitative-quantitative GIS process (factor maps, map algebra, comparison to ecosystem services)
- 2. RESULTS Hydrogeodiversity Assessment Map, Identifed hydrogediversity landscapes and promote their conservation,
- 3. GENERALIZATION Examples of dynamic geodiversity in the glacial environment of the Alps and effects of landscape and ecosystem services

- 1) Geodata Acquisition and mapping
- 2) Qualitativequantitative GIS process (factor maps, map algebra, Zwolinsky et al., 2018)

Comparison of final hydrogeodiversity to ecosystem services

The Mount Meager Massif

A glaciated volcano of British Columbia, Canada

9

4 km

Mount-Meager

1) Example of Base Geodata Acquisition and mapping

Google Earth

D 2018 Google

Geodata acquisition and elaboration

Data	Source Data	Year	File	GIS layer name
Thematic Layer	Geomorphological Geodatabase	2015	.gdb	Mount Meager landforms
	Glaciers	1947-2016	.shp	Glacier 19472016
	GLIMS	2009	.shp	Glacier GLIMS
Base Data	Lidar	2015-2016	.geotiff	DEM
	Multitemporal Orthophoto	1947-2006	.geotiff	Orthophoto 19472006

Total layers: 41

Geomorphological map

Land system map

Geomorphological Map

Mt. Meager Massif

Gravitational unclassified Landforms

Ketlle hole Glacial cirque scarp Moraine crest

Fumarole

.

moraine crest (LIA) Streamlined bedrock waterfall

Multi-Spatial Interpretation: Mount Meager Geomorphological setting

Land System Map Mt. Meager Massif

Glacial active landforms

Glacial accumulation landforms Glacial erosion landforms

Glacial relit landforms

Gravitational landforms

Fluvial landforms

Fluvial erosion landforms Fluvial accumulation landforms

Glaciers

Glacier (2015)

BY

A land-systems map defines those areas, which certain predictable combinations of landforms and their associated soils and vegetation are likely to be found. 12

Multi-Temporal Interpretation: Mount Meager's glaciers

It was possible to document the glacial fluctuations that took place between 1947 and 2016, thanks to geomorphological analysis based on Orthophotos and DEM shaded relief model.

Sesia-Val Grande UNESCO Global Geopark

Choosen parametres for hydrogeodiversity assessment

Purpose	1°= COGNITIVE	1°: Define a conceptual structure of geodiversity linked to water resources		
	2°= OPERATIONAL	2°: Identifed areas characterized by high hydrological geodiversity		
Data Source	INDIRECT	CNR-REGIONE PIEMONTE [22]		
		SIRI - REGIONE PIEMONTE[23]		
		PPR PIEMONTE[24]		
		ARPA PIEMONTE[25]		
		AUTORITÀ DI BACINO PO[26]		
		SESIA VAL GRANDE UGGp [27]		
		CORINE LAND COVER [28]		
Subject	SELECTIVE	Choice of a set of components of		
	APPROACH	the natural abiotic environment		
Spatial Scale	REGIONAL	Analysis Scale 1:100.000		
Time Scale	CURRENT	Most updated data		
Evaluation RELATIVE		Hydrogeosystem services, human-		
Criterion		centred		
Evaluation	MIXED=	Expert and automatic classification		
Technique	QUANTITATIVE-			
	QUALITATIVE			
Representation	CARTOGRAPHIC	ESRI ArcGis		
of the results				
of evaluation				

The 4 main factors of hydrogediversity

- 1. Basement rocks and deposits permeability, integrated with Fracturing Index (tP), for the Factor Map of Total Permeability
- 2. Land use, integrated with Slope Instability Index (tLU), for the Factor Map of Total Land Use;
- 3. Springs and wells location (SWD) for the Factor Map of Springs and Wells Density;
- 4. Hydrography, glaciers location, glacial cirques, landslides and fluvial conoids location (MR) for the Factor Map of Morphogenetic Relevance.

These factors represent the variables of the hydrogeodiversity (HGD) equation, that can be summarized as:

Hydrogediversity facto map construction scheme

Sesia Val Grande - Factor maps examples

Factor map of Total Lithological Permeability

Example 7 Factor map of Lithological Permeability integrated with Fracturing Index.

Factor map of Land Use integrated with Landslides Density Index.

Sesia Val Grande - Factor maps examples

Factor map of Springs and Wells Density

 $\textcircled{}$

ΒY

(CC)

Structure of the lecture

- . FOREWORDS on Geodiversity Glocal Approach
- 1. METHODOLOGY Assessment of regional geodiversity connected to hydro(cryo)sphere (qualitative-quantitative GIS process: (factor maps, map algebra, comparison to ecosystem services)
- 2. RESULTS Hydrogeodiversity Assessment Map, Identifed hydrogediversity landscapes and promote their conservation,
- 3. DISCUSSION Examples of dynamic geodiversity in the glacial environment of the Alps and effects of landscape and ecosystem services

(cc)

22

Comparison of final hydrogeodiversity to ecosystem services

Focus on Glacial Landscape of Monte Rosa

HYD SULTS ASTEMIC SERVICES PROVIDED:

Jating:

nimate: precipitation density, humidity and winds hydrographic network, slope stability

surface water reserve Support: and establishment of natural habitats (glacial, periglacial environments, rockwalls, lakes) and platforms for human settlement (basins and glacial valleys), pedogenesis. **Provisioning:** drinkable water, energy.

Culture: places of spirituality, myth, conquest,

Knowledge: Glacial evolution and stages,

Geological and geomorphological constrains to mountain geodiversity

I. FOREWORD - FOREWORDS on Geodiversity Glocal Approach

- 2. METHODS Systematization of knowledge related to geodiversity of mountains (addressing issues related to scale of analysis and representation)
- 3. RESULTS GIS mapping and qualitativequantitative assessment of geodiversity (Examples from glaciated/deglaciated mountains of Europe and Canada)
- 4. DISCUSSION Classification and presentation of components of mountain geodiversity based on their spatial and temporal dimension, and the related geomatics tools

Tools for assessment of geodiversity

Possible outputs for analysys of geological and geomorphological contrainns to geodiversity in mountain areas

> Regional geological setting, geometry of drainage basins and major valley slopes

> > RANGE

Spatial dimensions

B Glaciation/deglaciation (Long-term and areal glacial processes)

VALLEY

Holocene gravitational evolution

RELIEF

SLOPE

D Recent evolution

DISCUSSION

PLEISTOCENE

HOLOCENE

 \bigcirc

Time dimens

Possible outputs for analysys of geological and geomorphological contrains to geodiversity in mountain areas

LEISTOCENE Time dimens

HOLOCENE

DISCUSSION Following the spatial and temporal "sizes" of phenomena it is possible to operate appropriate selections of geomorphometrics techniques ...

Regional geological setting, geometry of drainage basins and major valley slopes

В Glaciation/deglaciation (Long-term and areal glacial processes)

Holocene gravitational evolution

RELIEF

SLOPE

Recent evolution

..to get better results, both in reconstructing the evolutionary stages of the relief and in hazard and risk assessments, preventions, remedial measures projects

> VALLEY RANGE **Spatial dimensions**

A proposal for a targeted multidimensional (S/T) classification of geomatics for geodiversity

