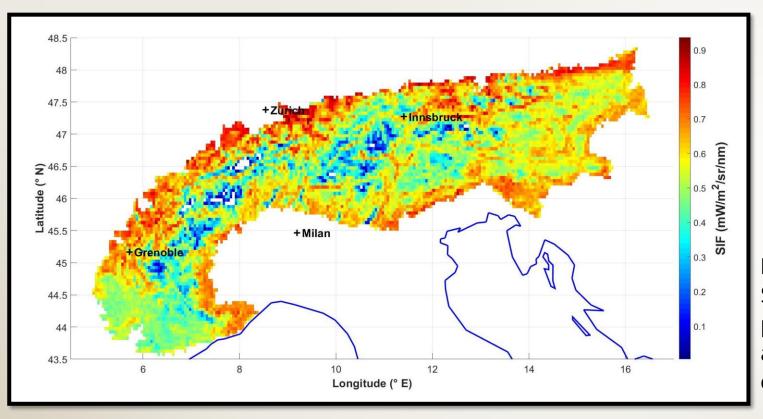

Satellite-based Sun-Induced Chlorophyll Fluorescence in the Greater Alpine Space: Spatial Patterns and Relationship to Gross Primary Productivity

Gomarasca, U.¹, Duveiller, G.², and Cescatti, A.², Wohlfahrt, G.¹ ¹ Department of Ecology, University of Innsbruck, Innsbruck, Austria ² European Commission Joint Research Centre, Ispra, Italy

Aims


- Analyze downscaled GOME-2 SIF product over Alps:
 - Spatiotemporal SIF dynamics
 - Link environmental Land Cover and Elevation
 - Land Phenology Metrics
 - SIF-GPP relationship

Hypothesis

- **1.** Current SIF products insufficient for heterogenous ecosystems
- **2.** SIF-GPP relationship biome-specific at the landscape scale
- 3. Land cover and elevation pivotal for SIF patterns in mountainous ecosystems

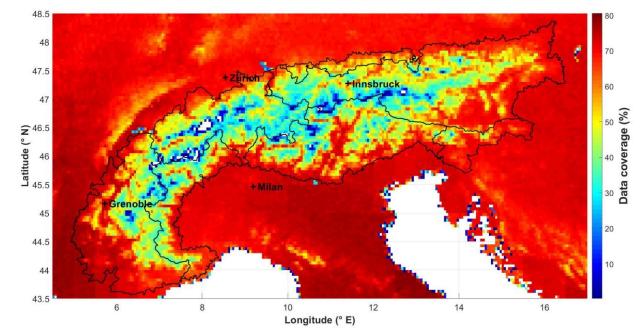

SIF

Fig. 1 – SIF over the Alps.

SIF from downscaled GOME-2 product over the study area, averaged over the entire period of data availability (2007-2017).

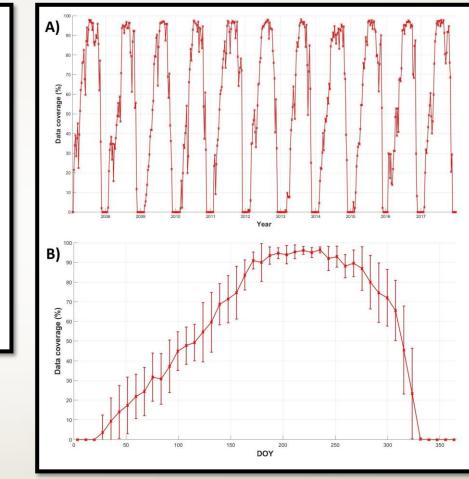
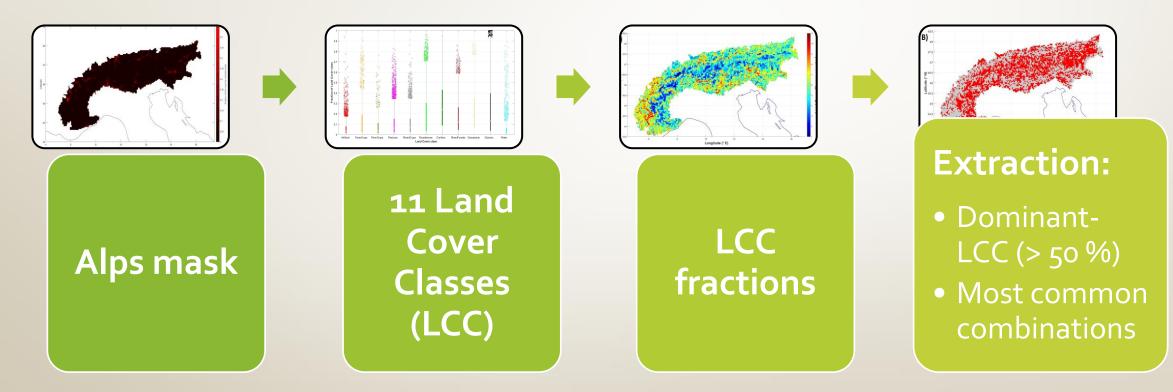

- Downscaled product (Duveiller et al., 2019)
- 0.05° x 0.05°, 8 d aggregation

Fig. 2 – Spatial Gaps Statistics.

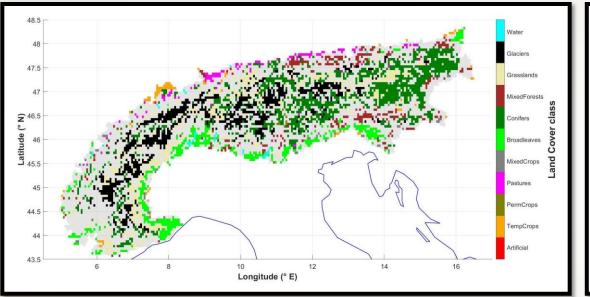
Percentage of data temporal coverage over the entire period (2007-2017), and Alps boundary (black outline, including state borders).

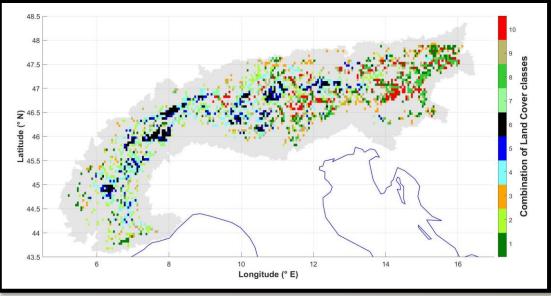
Figure 3 – Temporal Data Coverage.


Gap Statistics

GOME-2 downscaled SIF data coverage over time. A) Time period 2007-2017; year labels refer to the start of the year. B) Average data coverage (%) with standard deviation over the year for the period 2007-2017.

INTRODUCTION – METHODS & RESULTS – CONCLUSIONS – APPENDIX


Land Cover Upscaling



Dominant LCC Most common LCC combinations

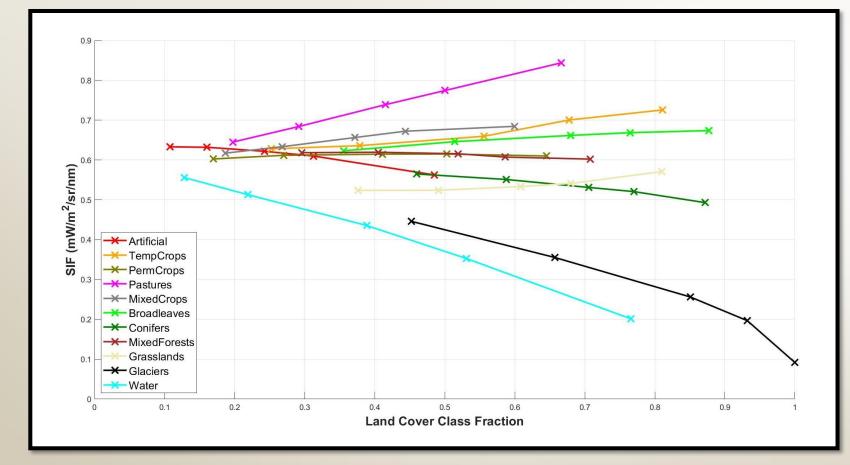


Fig. 4 – Land Cover classes extraction approaches.

Dominance of single LCC (47 % total coverage, **left**); most frequent combinations of LCC (26 % total coverage, **right**). Combinations: 1 = conifer forests (1); 2 = grassland + glacier + conifers; 3 = conifers + mixed forest; 4 = glaciers + grassland (1); 5 = mostly glaciers; 6 = 100 % glaciers; 7 = glaciers + grassland (2); 8 = conifer forests (2); 9 = conifers + grassland; 10 = conifers + pasture.

→ Further analysis with dominant-LCC extracted data

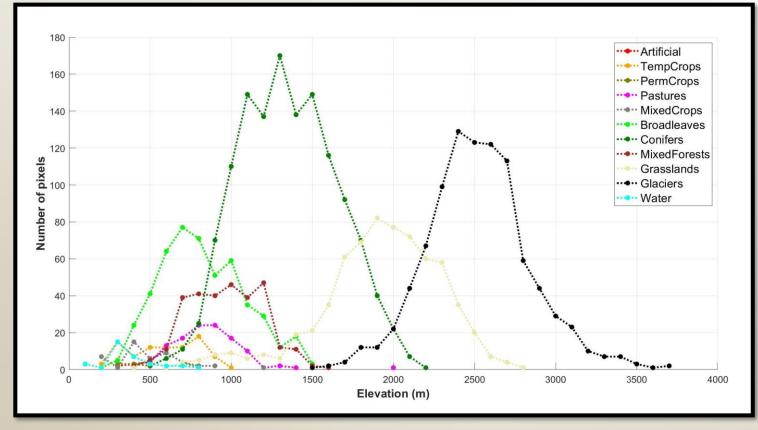


Fig. 5 – SIF for LCC at Increasing Quantiles.

SIF means at specific fraction of Land Cover classes, over quantiles for the cumulative probability of 50, 75, 90, 95, and 99 %. Error bars are not shown for clarity.

INTRODUCTION – METHODS & RESULTS – CONCLUSIONS – APPENDIX

LC vs Elevation


Fig. 6 – Dominant-LCC vs Elevation. Number of pixels with dominant coverage for each land cover class at different elevations.

INTRODUCTION – METHODS & RESULTS – CONCLUSIONS – APPENDIX

$$f(x) = a + \frac{b}{1 + \exp(-c(x-d))} - \frac{g}{1 + \exp(-h(x-m))}$$

Equation 1: after (Gonsamo et al., 2013)

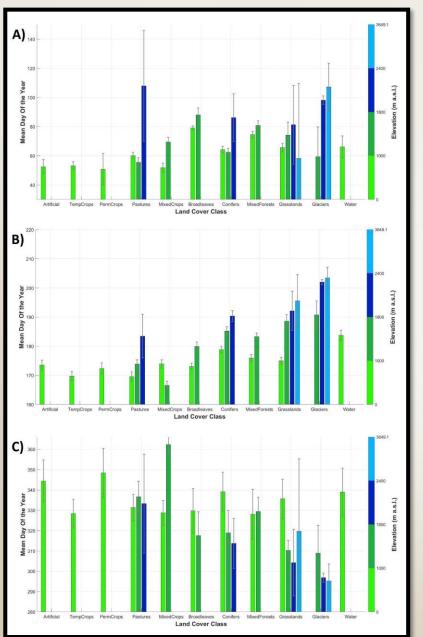
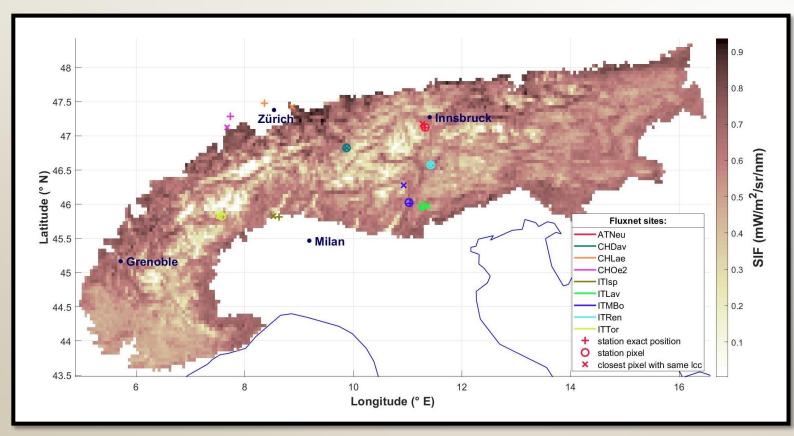

Phenology fitting algorithm

Fig. 7 – Curve Fitting for LPM.

Example of an idealized seasonal SIF-based phenological curve with derivatives, from which the appropriate phenological parameters are inferred.

INTRODUCTION – METHODS & RESULTS – CONCLUSIONS – APPENDIX


Phenology

- Fit: non-linear least squares to double-sigmoidal equation
- Bootstrapping (n = 1000)
- LPM over LC classes and elevation bands

Fig. 8 – Land Phenology Metrics over LCC.

DOY of phenological indicators with standard deviation over bootstrapped data (1000 iterations) for each land cover class at each elevation band where data are present. A) Start Of Season (SOS); B) Peak Of Season (POS); C) End Of Season (EOS).

SIF-GPP relationship

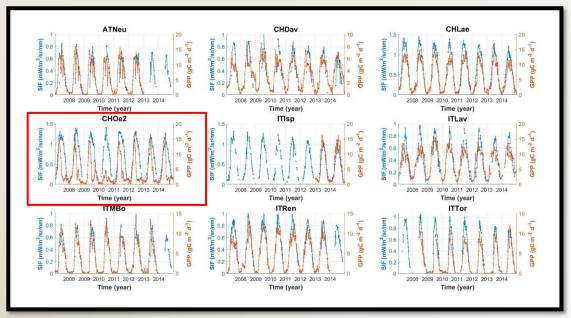
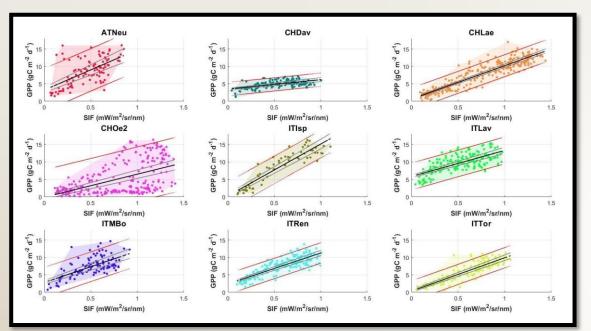

- Fluxnet sites (Alps)
- Same LC to SIF pixels
- Elevation + Location potentially different

Fig. 9 – EC-flux towers sites.

Locations of Fluxnet sites and approximated position within GOME-2 downscaled SIF 0.05° x 0.05° pixel grid.

INTRODUCTION – METHODS & RESULTS – CONCLUSIONS – APPENDIX

1_{0}


Fig. 10 – SIF vs GPP over time.

Temporal GPP variation from Fluxnet sites and downscaled GOME-2 SIF from pixels close to the sites and with the same dominant land cover class; blue = SIF; orange = GPP.

Fig. 11 – SIF vs GPP at the CH-Oe2 site.

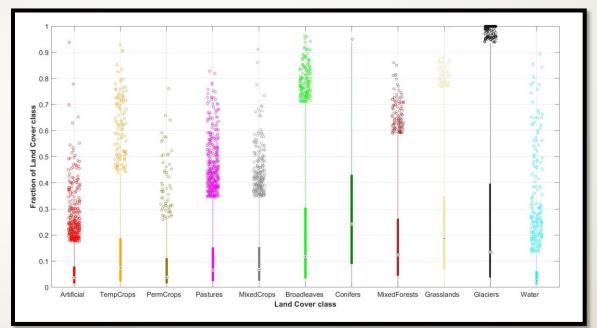
Temporal GPP variation at CH-Oe2 site, and downscaled GOME-2 SIF from the closest pixel within the Alps with dominant land cover class "temporary crops".

Fig. 12 – SIF-GPP relationship.

SIF-GPP relationship at every flux tower site.

Dots: data points; semi-transparent area: data range; black line: trend line after linear regression model; grey lines: standard error of line coefficients; red lines: 95 % prediction interval.

Table 1 – Z-test for the SIF-GPP relationship.


Z-test for the slope coefficients for each combination of two sites. Significant differences at the 95 % confidence interval are marked.

Site	AT-Neu	CH-Dav	CH-Lae	CH-Oe2	IT-Isp	IT-Lav	IT-MBo	IT-Ren	IT-Tor
AT-Neu		5.85	1.34	3.10	1.93	2.62	1.45	1.73	1.29
CH-Dav	5.85		15.37	5.24	13.26	6.98	6.16	10.50	11.33
CH-Lae	1.34	15.37		4.28	5.99	3.38	0.55	1.25	0.00
CH-Oe2	3.10	5.24	4.28		7.78	0.99	2.11	2.91	3.69
IT-Isp	1.93	13.26	5.99	7.78		7.27	4.56	6.18	5.43
IT-Lav	2.62	6.98	3.38	0.99	7.27		1.42	1.98	2.83
IT-MBo	1.45	6.16	0.55	2.11	4.56	1.42		0.12	0.51
IT-Ren	1.73	10.50	1.25	2.91	6.18	1.98	0.12		0.99
IT-Tor	1.29	11.33	0.00	3.69	5.43	2.83	0.51	0.99	

Limitations

- Spatial resolution!
- Data mismatch
 - SIF vs environmental parameters
 - Remote sensing vs ground measurements
- Year-to-year variability
- Biased LCC representation

Fig. 13 – LCC Boxplot.

Descriptive statistics for the relative contribution of Land Cover Classes within GOME-2 downscaled $0.05^{\circ} \times 0.05^{\circ}$ pixels over the total study area (number of pixels N = 8,514 × 11).

Conclusions

- First study on SIF over the Alps
- General trends and patterns could be analysed, but no fine scale dynamics
- Alps:
 - SIF likely correlated to land cover and elevation
 - SIF-GPP relationship biome-specific, with possibly additional site-specificity

Acknowledgements

- Dr. Karolina Sakowska
- MSc Sebastian Gstir
- Prof. Dr. Erich Tasser
- Dr. Lukas Hörtnagl
- FLUXNET community

Literature

- Gomarasca, U., Satellite Based Sun-Induced Chlorophyll Fluorescence in the Greater Alpine Space: Spatial Patterns and Relationship to Gross Primary Productivity (2020). Print.
- G. Duveiller *et al.*, 'A spatially downscaled sun-induced fluorescence global product for enhanced monitoring of vegetation productivity', *Earth Syst. Sci. Data Discuss.*, pp. 1–24, Aug. 2019, doi: 10.5194/essd-2019-121.
- A. Gonsamo, J. M. Chen, and P. D'Odorico, 'Deriving land surface phenology indicators from CO2 eddy covariance measurements', *Ecol. Indic.*, vol. 29, pp. 203– 207, 2013, doi: 10.1016/j.ecolind.2012.12.026.

Land Cover Classes (LCC)

Land Cover Class (LCC)	Corine Land Cover (LABEL3)	CLC code	Tabl	
Artificial	Continuous urban fabric	111		
	Discontinuous urban fabric	112	12 Elev	
	Industrial or commercial units	121	this	
	Road and rail networks and associated land	122		
	Port areas	123	type Cove	
	Airports	124		
	Mineral extraction sites	131	Cove	
	Dump sites	132	_	
	Construction sites	133	Grasslands	
	Green urban areas	141		
	Sport and leisure facilities	142		
Temporary crops (TempCrops)	Non-irrigated arable land	211	Glaciers	
	Permanently irrigated land	212	Glaciers	
	Rice fields	213		
Permanent crops (PermCrops)	Vineyards	221		
	Fruit trees and berry plantations	222		
	Olive groves	223	Water	
Pastures	Pastures	231		
Mixed crops (MixedCrops)	Annual crops associated with permanent crops	241		
	Complex cultivation patterns	242		
	Land principally occupied by agriculture	243		
	Agro-forestry areas	244		
Broadleaves	Broad-leaved forest	311		
Conifers	Coniferous forest	312		
Mixed forests	Mixed forest	313		

Table A – Land Cover Classes.

Eleven Land Cover classes defined in this study, and corresponding land cover types with codes from the Corine Land Cover coding system.

	Grasslands	Natural grasslands	321
		Moors and heathland	322
_		Sclerophyllous vegetation	323
		Transitional woodland-shrub	324
2	Glaciers	Beaches	331
		Bare rocks	332
_		Sparsely vegetated areas	333
L		Burnt areas	334
2		Glaciers and perpetual snow	335
	Water	Inland marshes	411
		Peat bogs	412
-		Salt marshes	421
2		Salines	422
		Intertidal flats	423
		Water courses	511
		Water bodies	512
		Coastal lagoons	521
2		Estuaries	522
3		Sea and ocean	523

SIF-GPP linear regression

Table B – Statistics for the SIF-GPP linear regression model.

Linear regression model statistics for the EC-flux tower sites analysed.

Site	Slope	SEslope	Intercept	SEintercept	df	R2
AT-Neu	11.56	1.47	3.24	0.74	. 102	0.38
CH-Dav	2.71	0.36	3.51	0.21	. 132	0.30
CH-Lae	9.57	0.26	0.65	0.23	245	0.85
CH-Oe2	6.59	0.65	-0.07	0.56	257	0.29
IT-Isp	14.83	0.84	0.32	0.54	. 60	0.84
IT-Lav	7.44	0.57	5.87	0.33	178	0.49
IT-Mbo	9.02	0.96	2.84	0.52	113	0.44
IT-Ren	8.90	0.47	2.41	0.31	. 172	o.68
IT-Tor	9.57	0.49	0.37	0.31	. 130	0.75

INTRODUCTION – METHODS & RESULTS – CONCLUSIONS – APPENDIX