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Ssummary

The planetary boundaries (PB) framework defines nine Earth system processes that together demarcate a safe
operating space for humanity at the planetary scale based on deviation from Holocene-like conditions, the only
conditions that we know are able to support agriculture-based civilizations. In the original PB papers
#Rockstrém et al., 2009; Steffen et al., 2015), “the PB for freshwater use” is represented by water withdrawal

rom surface and groundwater, and assessed in relation to environmental flow requirements and impacts to
aquatic ecosystems.

To better reflect different key aspects of water’s role for vital Earth system processes, such as carbon balance
and terrestrial ecosystems, we recently proposed to instead represent the water planetary boundary through
multiple sub-boundaries based on the five primary water stores, i.e., atmospheric water, soil moisture, surface
water, groundwater, and frozen water (Gleeson et al., 2020ab).

We are now, in our work of progress, proposing two water sub-boundaries: a blue water sub-boundary whose
quantification depend on streamflow impacts on aquatic biodiversity, and a green water sub-boundary whose
quantification depend on both climatic and ecological consequences.

For the green water PB, we are possibly converging towards using a vegetation stress and soil moisture related
metric for defining the control variable, based on literature review and a revised evaluation framework (with
regard to Characterization of Holocene-Anthropocene transition, Impacts on Earth system stability,
Measurability, Actionability, and Parsimony).

Discussions welcome!
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i.e., variables for monitoring water cycle changes that affect the
capacity of the Earth systems to cope with perturbations consistent
with the planetary boundary framework.
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Current freshwater use planetary
boundary only considers streamflow
impacts on aquatic biodiversity.
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Gleeson et al., (2020), One Earth
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See details in:

Rockstrom et al., (2009), E&S
Gerten et al., (2013),

Steffen et al., (2015), Science
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Earth system functions of water stores
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Hydroclimatic regulation function
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Hydroecologic regulation function
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Storage function
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Transport function
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Key water functions and processes
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Approaches

Top-down approach

o Ti p pi ng e I eme nt (e.g., Lenton et al., 2008)
@ B | ome ba SEd (e.g., Land system PB, Steffen et al.., 2015)
N P Frocess ba SEd (e.g., Carpenter and Bennett, 2011)

Bottom-up approach
* Non-weighted

* Weighted

* Keystone region
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Alt B: 2 sub-boundaries
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Example of aggregation approaches

Response variable

non-weighted
approach

Globally-distributed
evapotranspiration
change used to define

percentage of land
surface impacted

A

Response variable

Percentage of hydrologic
units impacted

weighted hydrologic
unit approach

Globally-distributed
evapotranspiration
recycling ratio is
weighting factor
used to define
percentage of land
surface impacted

Weighted percentage of
hydrologic units impacted

Possible input data for hydroclimatic
function of atmospheric water store

Land-use change induced evapotranspiration change
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Possible response variable for hydroclimatic function of atmospheric water store:
climate pattern stability or land-atmosphere coupling stability

15



Water PB variables to be determined

* Control variable
* Response variable(s) = bl
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e Safe boundary of the safe operating space
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Adapted from Gleeson et al., (2020), One Earth
and DuBois, T., Cornell, S, et al. in prep.

What makes up a good water PB?

Scientific criteria

* Holocene-Anthropocene transition: |s the control variable a robust tracker of
anthropogenic perturbation away from a Holocene-like baseline condition?

* Impacts on Earth system stability: Does the water PB draws on the best available
evidence of how water cycle modifications can impact Earth's stability?

Scientific Representation Criteria

* Measurability: Can the status of the control variable be measured, tracked in
time, and monitored?

* Actionability: Does the water PB design maximize potential for active policy
management?

* Parsimony: Does the water PB design minimize overlaps and redundancy with
other planetary boundaries?

Wang-Erlandsson, et al., in prep.



Green water PB

e Control variable candidates based on literature review
* Precipitation, evaporation/evapotranspiration, or soil moisture-related change
* Annual mean, seasonality, measures of extremes, and/or vegetation stress

* Account for multiple response variables:
* Long-term carbon uptake and ecosystem impacts.

* Weighting factor candidates:

* moisture recycling ratio, land-atmosphere coupling feedback hotspots,
biodiversity metrics, land carbon uptake hotspots.

Wang-Erlandsson, et al., in prep.
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* Holocene exit characterization: Need to develop rationale and approach for baseline selection in the
absence of detailed knowledge.

» Earth system stability impacts: Key determinant of the land carbon sink (Green et al., 2019), which
constitutes a quarter of fossil fuel emissions (Ballantyne et al 2012). Also key determinant of the
stability of the Amazon forest, a tipping element of the Earth system (Steffen et al., 2018).

* Measurability: Current values through remote sensing (combined with modelling). Challenges to
compare to Holocene or pre-industrial values.

e Actionability: Can be integrated with land, water, and climate policies. Approaches and tools for
atmospheric water management are currently being developed (if e.g., moisture recycling is used as

weighting factor).

* Parsimony: Often share the same drivers as climate change PB, biosphere integrity PB, and land system
change PB. However, land management may influence outcomes not captured by other PBs.

Work in progress to detail the PB variables and values. Discussion welcome!

Wang-Erlandsson, et al., in prep.
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