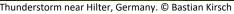
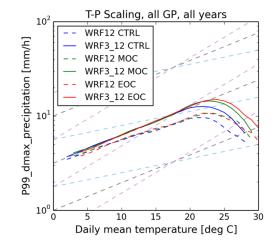


Temperature and dew point scaling of convective cells in present and future conditions

Christopher Purr¹, Erwan Brisson^{1,2}, Bodo Ahrens¹

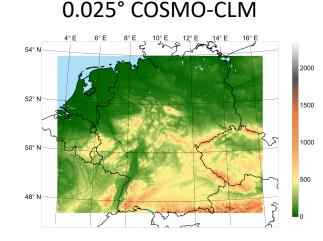

¹Institut für Atmosphäre und Umwelt, Goethe Universität Frankfurt ² Centre National de Recherches Météorologiques, Toulouse


EGU2020: Sharing Geoscience Online Questions & comments: purr@iau.uni-frankfurt.de

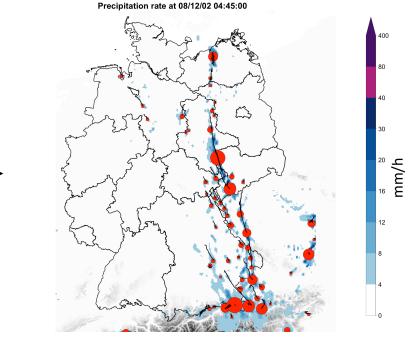
- Introduction: How will extreme precipitation change in the future?
- Intensification of the hydrological cycle with higher temperatures
- Precipitation extremes could scale according to water holding capacity (CC-rate: 7%/K)
- Different scaling rates on sub-daily time scales
 - Convection permitting simulations show varying scaling rates close to Clausius-Clapeyron Rate or above
 - Similarity: scaling curve drops off at higher temperature and higher precipitation values in the future (e.g. <u>Prein et al. 2017</u>, <u>Knist et al. 2018</u>)

Knist et al. (2018)

Introduction: Limitations of temperature scaling


- 2m temperature is a proxy for absolute humidity only if relative humidity is constant
- Humidity is only 1 of at least 3 parameters (besides static stability and wind shear) to determine form and strength of convective storms (see e.g. <u>Weismann & Klemp 1982</u>)
- Understanding of convective cell dynamics in convection-permitting simulations necessary
- ➤Convective cell tracking
- Research questions:
 - (1) How will the characteristics of convective cells change with global warming?
 - (2) Is the temperature and moisture scaling of cell characteristics similar in present and future conditions and what is the influence of static stability?

Methods: Tracking rain cells in convectionpermitting simulations


- 2 Continuous Simulations at 2.8 km grid size
 - 1976-2005 (Present) and 2070-2100 (Future, RCP8.5)
 - 1-moment microphysics with graupel
 - Nesting strategy:
 - EC-Earth GCM ->
 - 0.22° COSMO-CLM ->

Tracking of 5-min precipitation output

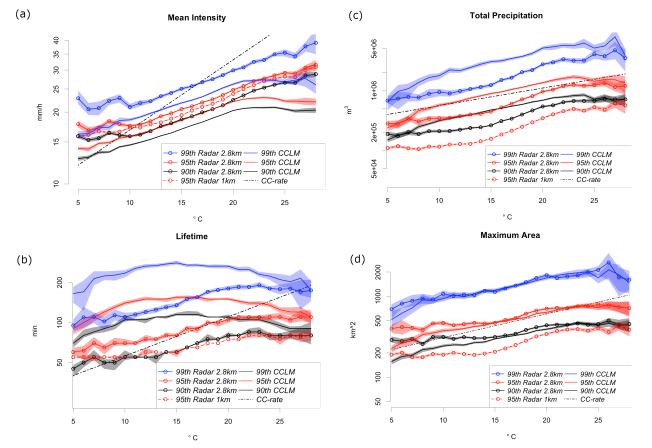
Cell characteristics:

- Lifetime
- (mean and maximum) Intensity
- (maximum) Area
- Precipitation sum

5-min Precipitation intensity, detected cells (red circles) and tracks (black lines)

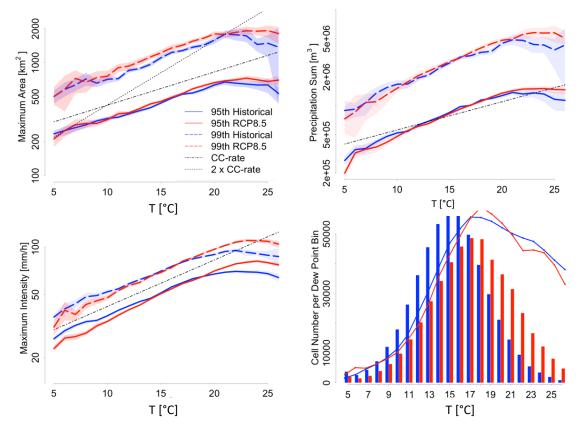
Results (1): Frequency of cell characteristics

Change in %	Lifetime	Max. Area	Precipitation Sum	Mean Intensity	Max Intensity	CE-Present → ECE-Present → ECE-Future
						equence 100000
Mean	-2,1	+13,4	+18,3	+3,3	+8,3	Absolute Frequency 100 10000 Absolute Frequency 100 10000
Median	0,0	+9,1	+3,2	+2,4	+5,8	Image: Second state sta
75 th perc	-7,7	+10,5	+6,4	+3,6	+8,9	
90 th Perc	0,0	+13,5	+12,0	+5,2	+11,1	
99 th Perc	0,0	+27,9	+27,0	+9,3	+15,8	Absolute Frequency 100 10000 100 10000 Absolute Frequency 100 10000
Trend Scaling of 99 th P. [%/K]	0	+8.2	+7.9	+2.7	+4.6	Absolute F 1 100
						100 200 300 500 700 1000 8 12 16 20 24 28 32 36 40 Area [km^2] Mean Intensity [mm/h]


- Total number of cells is virtually constant (+0.4%)
- Intensity and area of cells increases while lifetime stays constant -> increase in precipitation sum per cell
- Strongest relative increase for highest precentiles -> strongest storms intensify the most

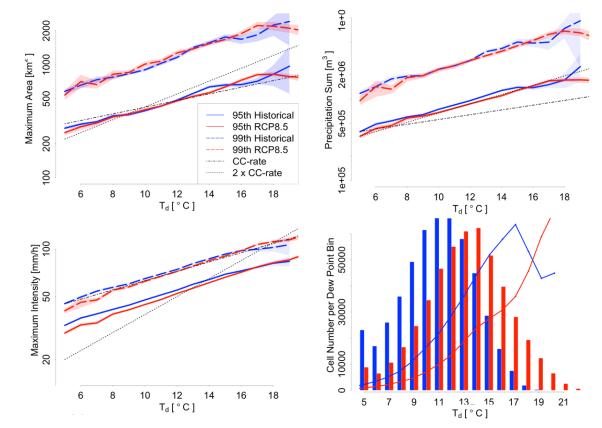
Interlude: Evaluation of temperature scaling of cell characteristics

- observations: Radar climatology (5-min precipitation for 15 years)
- Similar scaling rates
- deviations:
 - Total precipitation: constant slope
 - Mean intensity: drop-off at high temperatures
 - lifetime: everything


Purr et al. (2019): Convective Shower Characteristics Simulated with the Convection-Permitting Climate Model COSMO-CLM

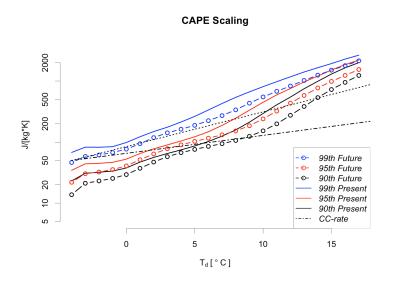
Results (2): Temperature scaling of cell characteristics

- Exponential increase of area, intensity and precipitation sum at varying rates
- Drop-off at higher temperatures in the future
- ➢ similar to scaling at fixed location
- Frequency of cells per temperature bin changes


Bars: absolute number of cells per bin. Lines: number of cells per occurence of temperautre bin.

Results (2): Dew point scaling of cell characteristics

- Exponential increase without drop-off at high dew point temperatures
- Dew point scaling similar in present and future
- BUT: Frequency of cells per dew point bin changes (in absolute and relative terms)


Bars: absolute number of cells per bin. Lines: number of cells per occurence of dew point bin.



Results (2): Influence of static stability

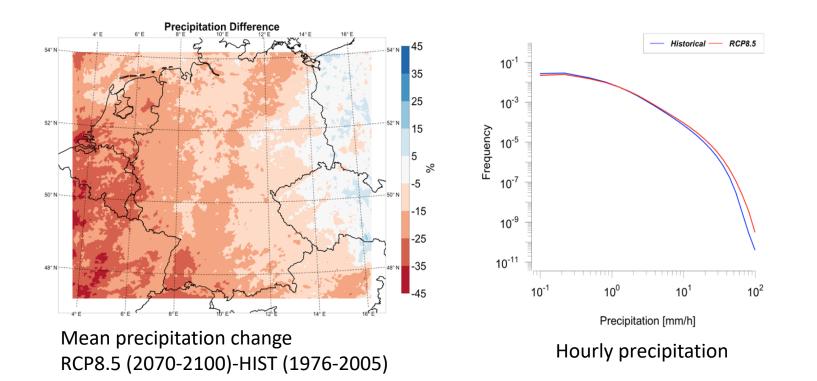
• peak CAPE increases with temperature and humidity (Agard & Emanuel, 2017)

 Change in CAPE with dew point not linear

- Dew point scaling of precipitation sum dependent on CAPE
- Lower scaling rate of precipitation sum for low and high CAPE values

Precipitation Sum

Summary


- Change in convective cell characteristics (RCP8.5, end-of-century):
 - Cell number and cell life time stay approx. constant
 - Shift towards more intense and larger cells, leading to increased precipitation sums per cell
 - Increase is highest for the most intense events
- Temperature and dew point scaling of cell characteristics
 - Temperature: scaling similar to fixed location scaling -> area, intensity and precipitation sum increase exponentially and drop-off at high temperatures
 - Dew point:
 - No drop-off at high moisture levels
 - Scaling rates similar for present and future, BUT: number of cells per dew point bin changes (preventing simple statistical inference of convective precipitation from dew point)
 - Scaling rate of precipitation sum exactly 2 x CC, BUT: dependent on CAPE

Appendix – Eulerian Precipitation Statistics

- Convection permitting simulation:
 - Mean decrease in summer precipitation of 14%
 - Increase in high hourly (and 5-min) precipitation intensity

11