Twenty First Century Climate Extremes Projection and Climate Vulnerability Risk Assessment in Homogeneous Climatic Zones using high Resolution Climate Data

Firdos KHAN

School of Natural Sciences, National University of Science and Technology, Islamabad firdos.khan@sns.nust.edu.pkt, fkyousafzai@gmail.com

Jürgen Pilz, Shaukat Ali, Sher Muhammad

May 5, 2020

Overview

Introduction

- 2 Data and Target Location
- 3 Methodology
- 4 Climate Extremes Projections
 - Probability Density Functions
 - Spatio-temporal Trend Analysis
 - Climate Extremes, their Magnitude and Statistical Significance Analysis
 - Summary and Recommendations
- Collaborative Research with National andInternational institutions
- 🕖 Q & A Session

Introduction

Figure 1: Climate risk index for 2020 where Pakistan is rsnked at 5th position.

 Firdos KHAN (SNS, NUST)
 Climate Extremes and Vulnerability Risk Asse
 May 5, 2020

Introduction: Motivation

Figure 2: Five homogeneous climate regions (Ullah et al., 2020)¹

¹ Ullah, H.; Akbar, M.; Khan, F. (2020) Construction of homogeneous climatic regions by combining cluster analysis and L-moment approach on the basis of Reconnaissance Drought Index for Pakistan. Int. J.: Climatol. Vol. 40(1), Pp.324-341. \sim 0, \sim

- Projection of climate extremes in the homogeneous climatic regions under the RCP4.5 and RCP8.5 for selected GCM(s)
- Spatio-temporal trend analysis of projected climate extremes
- Statistical signifincance analysis of projected climate extremes

Two types of data have used

- Observed data for the duration of 1976-2005
- Fourteen GCMs outputs where each was divided into four independent chunks

Reference duration: 1976-2005 Future one (F1): 2011-2040

Future two (F2): 2041-2070 Future three (F3): 2071-2100

The target location of this study is Pakistan and divided into five homogeneous climate zone presented in Fugure 2.

Methods: Theoretical fremework

Figure 3: Schematic representation of methodology.

Firdos KHAN (SNS, NUST) Climate Extremes and Vulnerability Risk Asse

< □ > < 同 > < 回 > < 回 > < 回 >

Figure 4: R95P for CanESM2 under the RCP4.5.

Firdos KHAN (SNS, NUST) Climate Extremes and Vulnerability Risk Asse

Figure 5: R99P for CanESM2 under the RCP4.5.

Firdos KHAN (SNS, NUST) Climate Extremes and Vulnerability Risk Asse

Figure 6: SU25 for CanESM2 under the RCP4.5.

Firdos KHAN (SNS, NUST) Climate Extremes and Vulnerability Risk Asse

Figure 7: TN90P for CanESM2 under the RCP4.5.

Firdos KHAN (SNS, NUST) Climate Extremes and Vulnerability Risk Asse

Figure 8: TX90P for CanESM2 under the RCP4.5.

Firdos KHAN (SNS, NUST) Climate Extremes and Vulnerability Risk Asse

∃ →

• • = • •

Figure 9: R95P percent Changes for CanESM2 under the RCP4.5 and RCP8.5.

Figure 10: R99P percent Changes for CanESM2 under the RCP4.5 and RCP8.5.

Figure 11: SU25 percent Changes for CanESM2 under the RCP4.5 and RCP8.5.

Figure 12: TN90P percent Changes for CanESM2 under the RCP4.5 and RCP8.5.

16 / 26

Figure 13: TX90P percent Changes for CanESM2 under the RCP4.5 and RCP8.5.

17 / 26

Figure 14: Definitions of four squares and colors of climate extremes presented in Figures 15-18. The four square represent different time duration and color shows status of each climate extreme. Light color show decrease/increase while deep color shows significant decrease/increase in climate extremes. Where green color shows no changes in climate extremes. Statistical significance of extremes events were tested at 5 perecent level of significance.

Figure 15: Temperature extremes and their statistical significance under the RCP4.5

Zone/Variable							P	recij	pitat	ions	' Ex	tren	ies	for I	RCP	4.5					
	Model/ Indices	RX1da Y		Rx5d ay		SDII		R10		R20		CDD		CWD		R.95p		R.99p		PRCPT OT	
Z1	CMCC-CMS																				
	EC-EARTH																				
Z2	canESM2																				
	FGOALS-s2																				
Z3	EC-EARTH																				
	GFDL-ESM-2M																				
Z4	MPI-ESM-LR																				
	MIROC-ESM- CHEM																				
Z5	canESM2																				
	CCSM4																				

Figure 16: Precipitation extremes and their statistical significance under the RCP4.5

Firdos KHAN (SNS, NUST) Climate Extremes and Vulnerability Risk Asse

May 5, 2020 20 / 26

Figure 17: Temperature extremes and their statistical significance under the RCP8.5

Firdos KHAN (SNS, NUST) Climate Extremes and Vulnerability Risk Asse

Figure 18: Precipitation extremes and their statistical significance under the RCP8.5

Firdos KHAN (SNS, NUST) CI

- TN10P and TX10P have decreasing trends while TN90P and TX90P have increasing trends in future accross Pakistan under RCP4.5 and RCP8.5 scenarios.
- The number of summer days (SU25) and frost days (FD0) are increasing and decreasing, respectively, in the contry under both scenarios.
- TMAXmean and TMINmean are increasing in all climate regions for both climate change scenarios.
- R95P, R99P have mixed trend, however, it is increasing during future while PRCPTOT has mixed trend in different climate zones.
- Further analysis required to investigate the impacts of projected climate extremes on agriculture production in zone-5, water availability in zone-1, drought situation in zone-3 and zone-4, climate extremes and Monsoon phenomena in zone-2.

Collaborative Research with National and International institutions

Firdos KHAN (SNS, NUST)

Climate Extremes and Vulnerability Risk Asse

May 5, 2020 24 / 26

Questions and Answers

Thank you!

Firdos KHAN (SNS, NUST) Climate Extremes and Vulnerability Risk Asse

Image: A match a ma