



# Testing a novel technique, geotubes with mycotechnosoil, to mitigate post-fire erosion and enhance ecosystem recovery

Dalila Serpa<sup>1</sup>, Jan J. Keizer<sup>1</sup>, Ana I. Machado<sup>1</sup>, Martha Santos<sup>1</sup>, Bruna R. F. Oliveira<sup>1</sup>, Behrouz Gholamahmadi<sup>1</sup>, Martinho Martins<sup>1</sup>, Oscar González-Pelayo<sup>1</sup>, and the Life-Reforest Consortium<sup>2</sup>

<sup>1</sup>Earth Surface Processes (ESP) Team, Centre for Environmental and Marine Studies (CESAM), Department of Environment and Planning, University of Aveiro, Aveiro, Portugal

<sup>2</sup>https://lifereforest.com/ (info@cetim.es)



















# **Background**

- Wildfires **enhance the hydrological and erosion responses of** forest ecosystems, which not only promotes **soil (fertility) loss** but also **impacts the downstream values-at-risk** such as, roads, hydraulic infrastructures, and the water quality of reservoirs and rivers.
- From the existing state of-the-art emergency stabilization measures, mulching has showed to be more effective than barrier-based methods, especially in the case of high intensity rainfall storms.

#### Objective

• Test an **innovative barrier-based technique**, geotubes with a mycothechnosol, to mitigate postfire soil erosion and promote vegetation recovery in burnt areas.





## **Geotubes with mycothechnosol**





• The REFOREST **geotubes contain seeds and a mycotechnosoil** composed of wheat straw, compost (urban and agrifood sludge) and wood splinter inoculated with fungi.



# **Material and Methods**

# PILOT SITE: Portugal

- Fire: 5/09/2019 7/09/2019 (1492 ha)
- Albergaria-a-Velha, Aveiro, North-Central Portugal
- Eucalypt site on schist

Moderate severity fire





September 2019

Source: Effis

https://effis.jrc.ec.europa.eu/)



# **Material and Methods**

# PILOT SITE: Spain

Fire: 14/09/2019 - 15/09/2019 (~10 ha)

Redondela, Coruña, Galicia

Pine site on granite





September 2019

Source: Effis

https://effis.jrc.ec.europa.eu/)





#### **EXPERIMENTAL DESIGN**

- 9 bounded erosion plots of 2 x 8 m
- 3 treatments to be tested:
  - 3 plots with mycotechnosols
  - 3 plots with mulching (eucalypt logging residues or pine needles)
  - 3 plots untreated
- Sediment-fences at the bottom of all plots to collect eroded sediments

2 m 8 m P2 P3 P4 P6 P8 **P9** Geotubes Untreated Mulch

Water samples analysed for pH, EC, TSS, nutrients (N and P) and metals





# **PILOT SITE: Portugal**

Treatments
application in
Albergaria
(October 2019)











# **PILOT SITE: Spain**

Treatment
application in
Redondela
(October 2019)









## PORTUGAL's PILOT SITE: Ground cover



September

- 3 months after fire, there were signs of natural vegetation recover in all the experimental plots
  - Seeds in the geotubes had also re-sprouted



October





November\_



**Preliminary results** 



December





#### **PORTUGAL's PILOT SITE: Erosion**





- Untreated plots presented the highest erosion rates in the first 4 months after fire
- Mulch was slightly more effective than geotubes in reducing post-fire soil erosion



#### PORTUGAL's PILOT SITE: Runoff





- Untreated plots presented the highest runoff volumes
- Geotubes were slightly more effective than mulch in reducing post-fire runoff



# Conclusions

- A soil protective layer is important for minimizing the hydrological and erosive response of burned forest areas
- As the effectiveness of geotubes and mulching was similar, treatment selection should depend on the characteristics of burnt hillslopes

# Thank you!



https://lifereforest.com/



LIFE REFOREST is a project co-funded by the European Union under the LIFE Programme Grant Agreement no. LIFE17 ENV/ES/000248

























