

Abstract ID: 20661 EGU 2020 session SSS4.2

HISTORY AND GEOGRAPHY OF LAND PRODUCTIVITY TO ASSESS THE CHALLENGES FOR FOOD SECURITY

Marta Tuninetti

Luca Ridolfi

Francesco Laio

Department of Environmental, Land, and Infrastructure Engineering

Motivations & Aims

Population growth

DA MANANAN

- Increasing demand of calories and proteins
- Land and water resources are approaching their upper bound

KEY CHALLENGE: producing more nutrients with less resources, while preserving the natural ecosystem

Existing literature: Nutritional yield to link crop yield and # of people fed

学校では、学校の学校

DeFries et al. (2015), DOI: 10.1126/science.aaa5766

Kassidy et al. (2013), DOI: 10.1088/1748-9326/8/3/034015

<u>Gaps</u>: lack of a unique indicator merging all crops and accounting for their multivariegate spectrum of nutrients; temporal and geographical evolution of the nutrient production in relation to the Malthusian trap with a data-driven approach

GOAL: monitoring the role of *intensification* vs *extensification* in boosting agricultural production of nutrients over 1961-2016 worldwide

Data & approach

NUTRITIONAL LAND PRODUCTIVITY(*LP***)** measures the amount of calories (*c*), fats (*f*), and proteins (*p*) supplied by a hectare of harvested land.

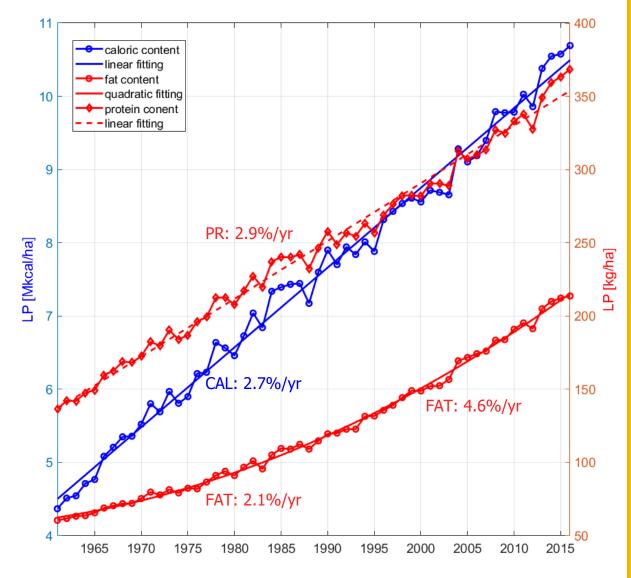
$$LP_{c,f,p} = \frac{\sum_{i} P(i) \cdot k_{c,f,p}(i)}{\sum_{i} LF(i)}$$

P(i) is the annual production of crop i [ton] source: FAOSTAT database (http://www.fao.org/faostat/en/#data)

k_{c,f,p}(i) is the calorie [kcal/ton], fat [g/ton], and protein [g/ton] content source: USDA database (<u>https://fdc.nal.usda.gov/</u>)

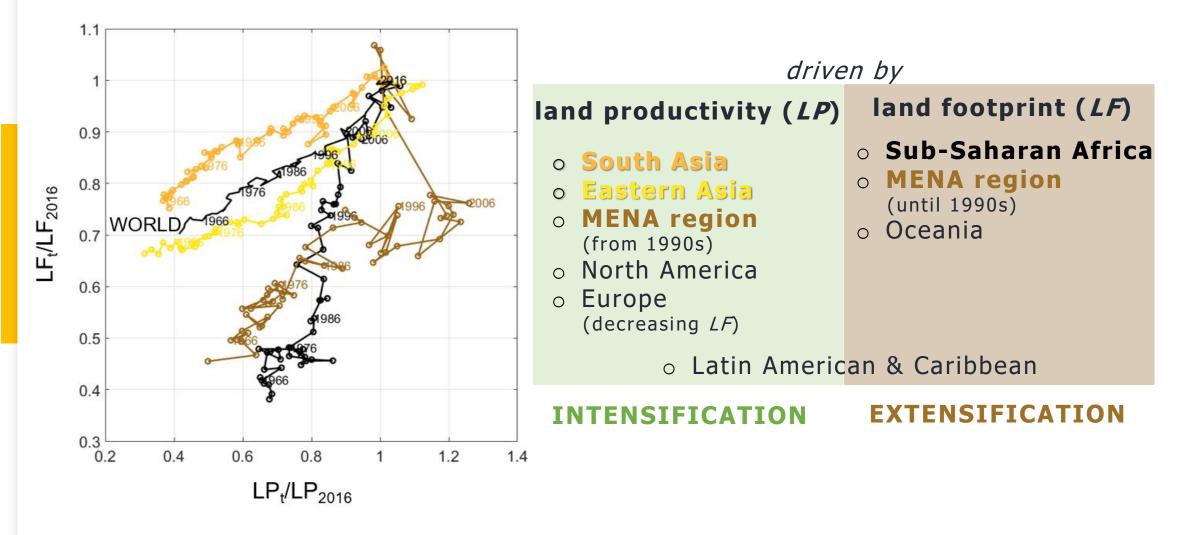
LF(i) is the crop-specific harvested area or Land Footprint [hectare] <u>source</u>: FAOSTAT database

140 crops, period: 1961-2016, country to regional scale analysis

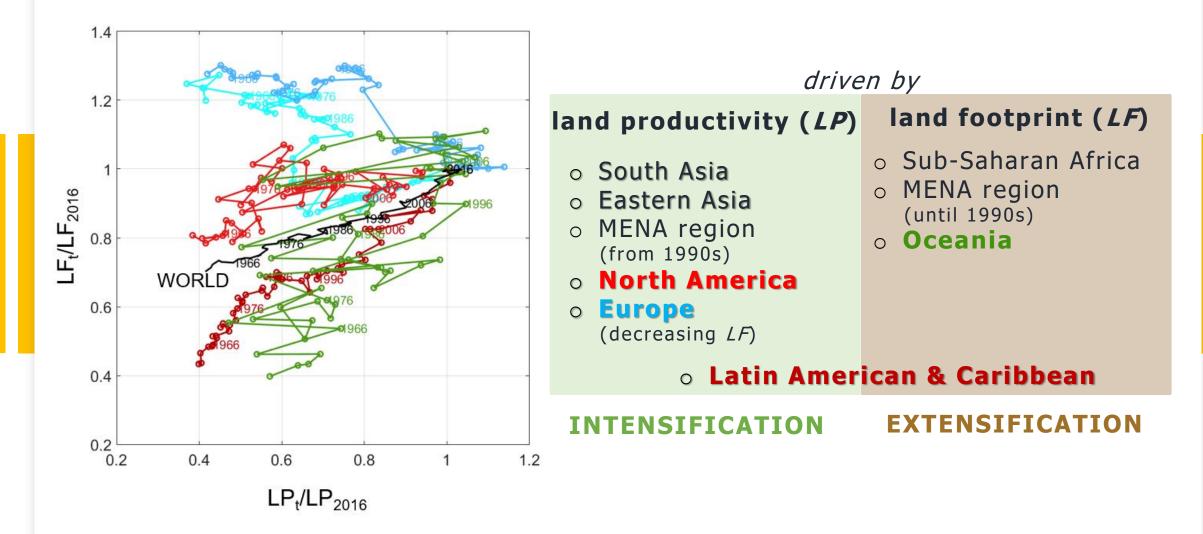


Global land productivity (LP) across the period 1961-2016.

Calories & protein *LP*: <u>LINEAR INCREASE</u>
Fats *LP*: <u>SUPER-LINEAR INCREASE</u>


We produce more fatty products (e.g., oil palm, rapeseed) than in 1960s.

A kilogram of crop still provides an average of <u>1700 calories and 55 g of proteins</u>, on global average, but it provides 60% more fats than in the past

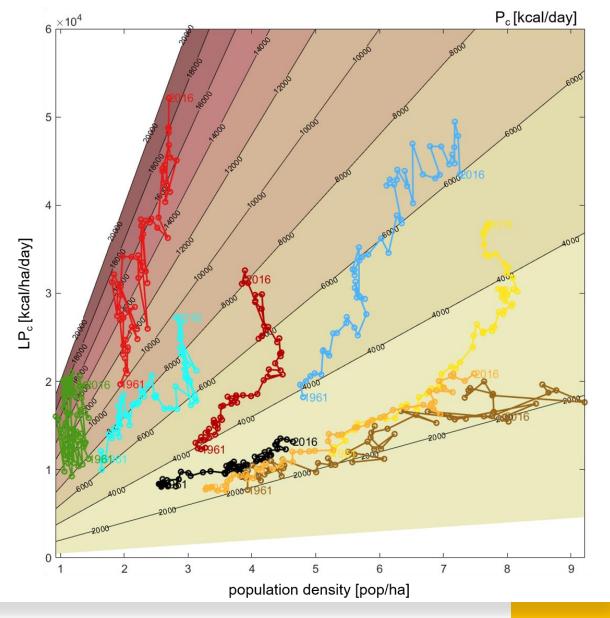

History and geography of agricultural production growth (1/2)

EGU20 – SSS4.2 – Marta Tuninetti (marta.tuninetti@polito.it)

History and geography of agricultural production growth (2/2)

EGU20 – SSS4.2 – Marta Tuninetti (marta.tuninetti@polito.it)

Did we escape the Malthusian trap?


 GLOBAL SCALE: production increased at faster rate than population growth→ increase of per-capita production

	1961		2016
CAL: PROT: FAT:	3711 115 51	to to to	5351 kcal/day/cap 184 g/day/cap 106 g/day/cap

The transition of the production regime happens when production is not levelled-off by population growth

<u>REGIONAL SCALE</u>:

- Eastern Asia: from 3000 to 5000 kcal/cap/day;
- Latin America: exceeds 8000 kcal/cap/day in 2016;
- South Asia, Africa and the MENA region still halted in the Malthusian trap.

- Key results
- The combined use of the land footprint and land productivity indicators allows one to monitor the role of agricultural intensification vs extensification
- * These indicators synthetize the dynamics of 140 different crops, having different yield and nutrients content
- * The LP indicator accounts at the same time for the crop yield and the nutrient content (as calories, fats, proteins), aiming at providing a nutrition-sensitive yield

ANSWER TO THE CHALLENGE: re-orienting the agricultural production basket toward those crops having the largest nutritional land productivity.

EGU20 – SSS4.2 – Marta Tuninetti (marta.tuninetti@polito.it)