Relationships between aboveground and belowground biomass stock a case study from mountain area temperate forests in the northern Carpathians

> Anna Zielonka<sup>1</sup>, Marek Drewnik<sup>1</sup>, Łukasz Musielok<sup>1</sup>, Dariusz Struzik<sup>1</sup>, Grzegorz Smułek<sup>1</sup>, Katarzyna Ostapowicz<sup>1,2</sup>

<sup>1</sup> Jagiellonian University, Faculty of Geography and Geology, Institute of Geography and Spatial Management,

Gronostajowa 7, 30-387 Krakow, Poland

<sup>2</sup> University of California, Berkeley, Department of Environmental Science, Policy & Management, Mulford Hall, Berkeley, CA 94720, USA

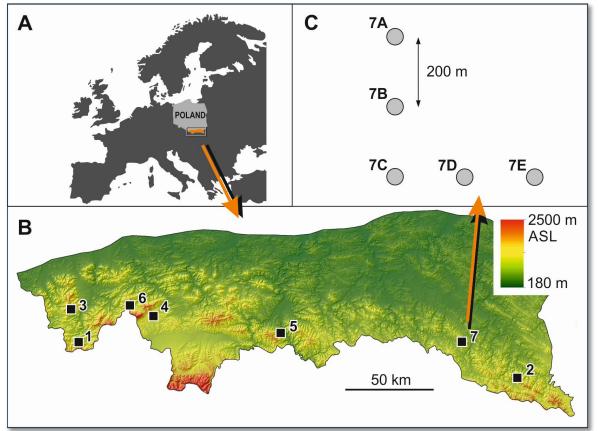
Corresponding author: Anna Zielonka e-mail address: anna.zielonka@doctoral.uj.edu.pl ORCID iD: https://orcid.org/0000-0003-2356-598X



Research was funded by the Polish National Science Centre (No. 2015/19/B/ST10/02127) and via Project No. UJ/IGiGP/K/DSC/004779



© Authors. All rights reserved


(1) estimate the soil organic matter (SOM) stock in mountain temperate forests in the Western Carpathians

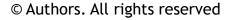
(2) estimate fine roots biomass (FRB) in soils under three tree species (beech, spruce, fir)

(3) assess the relationship between aboveground biomass (AGB), SOM stocks and FRB for beech-, spruce- and fir-dominated forests

(4) assess the effects of selected abiotic factors (i.e. elevation, aspect, slope, mean annual air temperature, mean annual precipitation) on SOM and FRB stocks found in beech-, spruce- and fir-dominated forests in the Western Carpathians

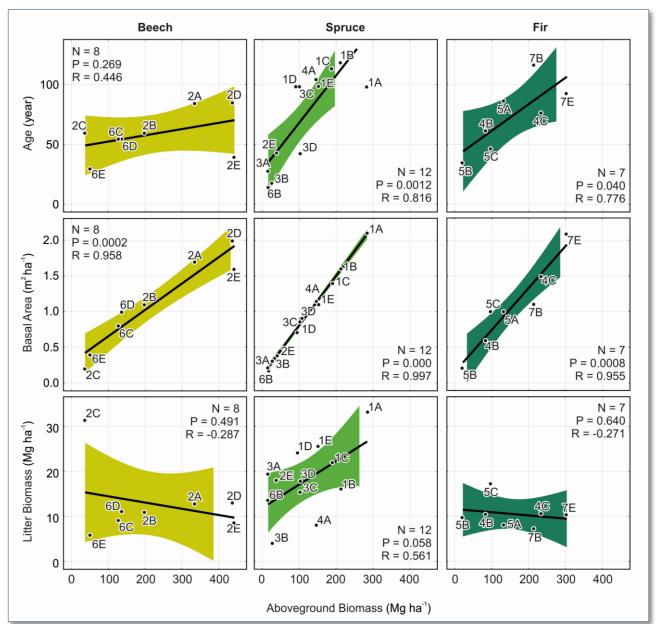
## **STUDY AREA**




| Study<br>site | Coordinates | Elevation range<br>min-max (m a.s.l.) | MAT<br>(°C) | MAP<br>(mm) |  |
|---------------|-------------|---------------------------------------|-------------|-------------|--|
| 1             | 49°26'54"N  |                                       |             |             |  |
| -             | 19°03'05"E  | 701-808                               | 5.1         | 1127        |  |
| 2             | 49°11'30"N  |                                       |             |             |  |
| 2             | 22°28'12"E  | 940-1067                              | 4.6         | 1068        |  |
| 3             | 49°38'01"N  |                                       |             |             |  |
| 5             | 18°58'36"E  | 768-887                               | 5.2         | 1103        |  |
| 4             | 49°34'28"N  |                                       |             |             |  |
| 4             | 19°41'09"E  | 706-753                               | 5.5         | 978         |  |
| -             | 49°29'27"N  |                                       |             |             |  |
| 5             | 20°36'35'E  | 575-658                               | 6.3         | 1021        |  |
| <u> </u>      | 49°37'44"N  |                                       |             |             |  |
| 6             | 19°28'30"E  | 836-937                               | 4.8         | 1134        |  |
| -             | 49°25'10"N  |                                       |             |             |  |
| 7             | 22°01'56"E  | 602-624                               | 6.1         | 870         |  |

At each study site (1-7) 5 study plots (12 m radius) from National Forest Inventory taken under consideration.

One soil pit at each study site (profile labeled 'C') was excavated to the lithic contact (7 reference pedons); in other study plots soil pits were excavated to approx. 50 cm (25 pedons).


Each plot classified based on dominating AGB species (> 75% of total AGB\*) \*AGB - live woody tree biomass





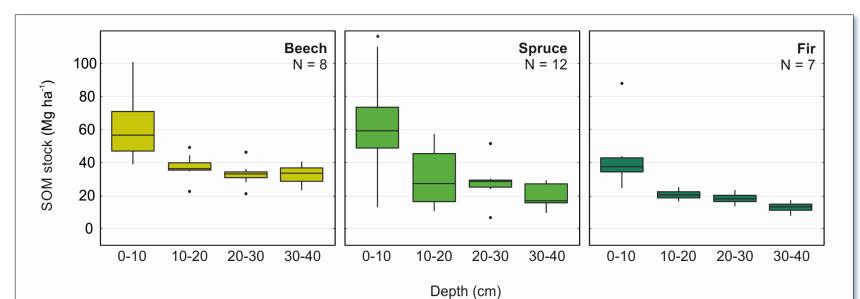
RESULTS

Aboveground biomass



The highest values were identified for beechdominated forests (more than ~440 Mg ha<sup>-1</sup>), while the lowest values in beech-dominated stands were less than 40 Mg ha<sup>-1</sup>. The AGB stock in sprucedominated stands ranged from ~15 to ~280 Mg ha<sup>-1</sup>. Among the fir stands, AGB stock varied from ~20 Mg ha<sup>-1</sup> to ~300 Mg ha<sup>-1</sup>.




#shareEGU2020 SSS5.8/BG1.15: Soils and the Critical Zone: carbon, resilience, and change

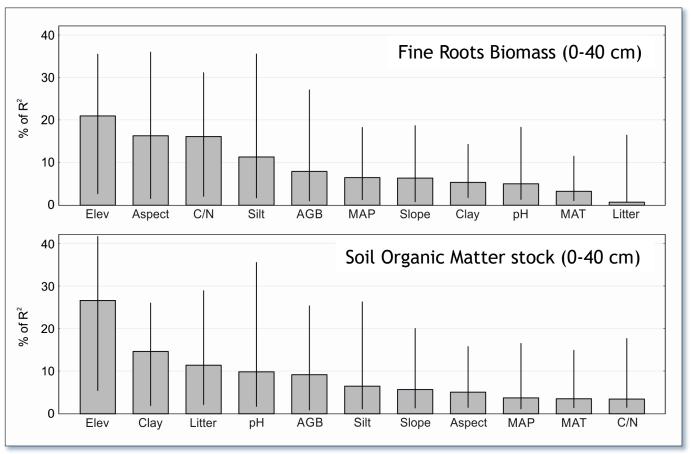
## **RESULTS** Soils morphology and properties (7 reference pedons)

| Depth       | Horizon        | Sand       | Silt      | Clay       | Texture <sup>3</sup> | soc      | C/N   | рН                 | Depth                   | Horizon      | Sand        |
|-------------|----------------|------------|-----------|------------|----------------------|----------|-------|--------------------|-------------------------|--------------|-------------|
| (cm)        |                |            | (%)       |            |                      | (%)      |       | (H <sub>2</sub> O) | (cm)                    |              |             |
| Profile 1C. | . Epidystric ( | Cambisol ( | Humic, L  | oamic)     |                      |          |       |                    | Profile 5C              | . Orthodystr | ic Cambisol |
| 2-0         | Oi             | n.a.       | n.a.      | n.a.       | n.a.                 | 24.03    | 21    | 4.25               | 3-0                     | Oi           | n.a.        |
| 0-14        | A              | n.a.       | n.a.      | n.a.       | n.a.                 | 3.92     | 9     | 4.29               | 0-7                     | A            | n.a.        |
| 14-64       | Bw             | 33         | 20        | 47         | L                    | 2.12     | 10    | 4.56               | 7-16                    | AB           | n.a.        |
| 64-98       | BC             | 33         | 20        | 47         | L                    | 1.59     | 9     | 4.90               | 16-27                   | Bw1          | 53          |
| 98-(125)    | С              | -          | -         | -          | -                    | 1.68     | n.a.  | 5.32               | 27-48                   | Bw2          | 53          |
| Profile 2C  | . Orthodystr   | ic Endoske | letic End | logleyic ( | Cambisol (Hu         | mic, Loa | amic) |                    | 48-82                   | BC           | 53          |
| 0-3         | Oa             | n.a.       | n.a.      | n.a.       | n.a.                 | 21.52    | 25    | 4.28               | 82- (111)               | C            | n.a.        |
| 3-10        | A              | n.a.       | n.a.      | n.a.       | n.a.                 | 4.28     | 10    | 4.24               |                         | . Orthodystr | ic Cambisol |
| 10-30       | AB             | 42         | 20        | 38         | L                    | 2.99     | 11    | 4.76               | 3-0                     | Oa           | n.a.        |
| 30-55       | Bw             | 42         | 20        | 38         | L                    | 2.34     | 12    | 4.62               | 0-12                    | A            | n.a.        |
| 55-73       | BC             | n.a.       | n.a.      | n.a.       | n.a.                 | 1.73     | 11    | 4.64               | 12-20                   | AB           | n.a.        |
| 73- (90)    | С              | n.a.       | n.a.      | n.a.       | n.a.                 | 1.20     | n.a.  | 4.78               | 20-38                   | Bw1          | 40          |
| Profile 3C  | . Dystric Ort  | hoskeletic | : Cambiso | ol (Loami  | ic)                  |          |       |                    | 38-60                   | Bw2          | 40          |
| 4-0         | Oa             | n.a.       | n.a.      | n.a.       | n.a.                 |          | 21    | 3.68               | 60-70                   | BC           | 40          |
| 0-5         | Ah             | n.a.       | n.a.      | n.a.       | n.a.                 | 6.16     | 19    | 3.58               | 70-(105)                | C            | n.a.        |
| 5-23        | Bw             | 48         | 19        | 33         | L                    | 3.72     | 18    | 3.86               |                         | . Orthoeutri |             |
| 23-(45)     | BC             | n.a.       | n.a.      | n.a.       | n.a.                 | 1.92     | n.a.  | 4.01               | 3-0                     | Oa           | n.a.        |
| Profile 4C  | . Epidystric   |            |           |            | ń l                  |          |       |                    | 0-28                    | A            | n.a.        |
| 3-0         | Oi             | n.a.       | n.a.      | n.a.       | n.a.                 | 34.31    | 20    | 4.38               | 28-63                   | Bw           | 3           |
| 0-7         | A              | n.a.       | n.a.      | n.a.       | n.a.                 | 2.22     | 12    | 4.42               | <u>28-05</u><br>63-(90) | BC           | 3           |
| 7-15        | AB             | n.a.       | n.a.      | n.a.       | n.a.                 | 1.52     | 12    | 4.49               | 03 (70)                 |              | -           |
| 15-45       | Bw             | 14         | 25        | 61         | SiL                  | 1.25     | 12    | 4.75               |                         |              |             |
| 45-50       | Bwg1           | 14         | 25        | 61         | SiL                  | 0.70     | 14    | 4.88               |                         |              |             |
| 50-80       | Bwg2           | 14         | 25        | 61         | SiL                  | 0.39     | 6     | 5.11               |                         |              |             |
| 80-(100)    | BC             | n.a.       | n.a.      | n.a.       | n.a.                 | n.a.     | n.a.  | 5.21               |                         |              |             |
|             |                |            |           |            |                      |          |       |                    |                         |              |             |

| Depth       | Horizon       | Sand       | Silt      | Clay    | Texture <sup>3</sup> | soc   | C/N  | рН                 |
|-------------|---------------|------------|-----------|---------|----------------------|-------|------|--------------------|
| (cm)        |               |            | (%)       |         |                      | (%)   |      | (H <sub>2</sub> O) |
| Profile 5C. | Orthodystric  | Cambisol ( | (Loamic)  |         |                      |       |      |                    |
| 3-0         | Oi            | n.a.       | n.a.      | n.a.    | n.a.                 | 39.45 | 29   | 4.39               |
| 0-7         | А             | n.a.       | n.a.      | n.a.    | n.a.                 | 3.43  | 18   | 4.09               |
| 7-16        | AB            | n.a.       | n.a.      | n.a.    | n.a.                 | 1.30  | 13   | 4.20               |
| 16-27       | Bw1           | 53         | 22        | 25      | SL                   | 1.24  | 13   | 4.31               |
| 27-48       | Bw2           | 53         | 22        | 25      | SL                   | 0.69  | 8    | 4.13               |
| 48-82       | BC            | 53         | 22        | 25      | SL                   | n.a.  | n.a. | n.a.               |
| 82- (111)   | С             | n.a.       | n.a.      | n.a.    | n.a.                 | n.a.  | n.a. | n.a.               |
| Profile 6C. | Orthodystric  | Cambisol ( | (Humic, I | Loamic) |                      |       |      |                    |
| 3-0         | Oa            | n.a.       | n.a.      | n.a.    | n.a.                 | 45.17 | 23   | 4.72               |
| 0-12        | А             | n.a.       | n.a.      | n.a.    | n.a.                 | 3.88  | 13   | 4.12               |
| 12-20       | AB            | n.a.       | n.a.      | n.a.    | n.a.                 | 1.77  | 13   | 4.15               |
| 20-38       | Bw1           | 40         | 26        | 34      | L                    | 1.53  | 12   | 4.28               |
| 38-60       | Bw2           | 40         | 26        | 34      | L                    | 1.59  | 13   | 4.41               |
| 60-70       | BC            | 40         | 26        | 34      | L                    | 1.15  | 15   | 4.49               |
| 70-(105)    | С             | n.a.       | n.a.      | n.a.    | n.a.                 | n.a.  | n.a. | n.a.               |
| Profile 7C. | Orthoeutric ( | Cambisol ( | Humic, L  | .oamic) |                      |       |      |                    |
| 3-0         | Oa            | n.a.       | n.a.      | n.a.    | n.a.                 | 39.35 | 32   | 4.81               |
| 0-28        | А             | n.a.       | n.a.      | n.a.    | n.a.                 | 1.99  | 10   | 6.01               |
| 28-63       | Bw            | 3          | 21        | 76      | SiL                  | 1.14  | 9    | 6.39               |
| 63-(90)     | BC            | 3          | 21        | 76      | SiL                  | 0.75  | 8    | 6.88               |

## **RESULTS** Soil Organic Matter Stock and Fine Roots Biomass




Live Fine Roots Biomass (Mg ha<sup>-1</sup>) Beech Spruce Fir 8 N = 8 N = 12 N = 7 . 6 4 2 0 20-30 30-40 0-10 10-20 20-30 30-40 10-20 20-30 30-40 0-10 10-20 0-10 Depth (cm)

Fine Roots Biomass and Soil Organic Matter stocks (0-40 cm depth) at each plot type.

| Plot type  | average | max   | min   | Q1    | Q3    |
|------------|---------|-------|-------|-------|-------|
| FRB_beech  | 3.2     | 5.5   | 1.2   | 1.2   | 4.1   |
| SOM_beech  | 162.9   | 213.3 | 128.5 | 147.6 | 170.1 |
| FRB_spruce | 3.4     | 10.2  | 0.0   | 1.5   | 3.9   |
| SOM_spruce | 140.9   | 224.5 | 56.6  | 124.2 | 162.6 |
| FRB_fir    | 6.5     | 13.8  | 1.2   | 2.3   | 11.0  |
| SOM_fir    | 95.5    | 143.3 | 78.6  | 79.3  | 97.6  |



## RESULTS



Assesing relationships between aboveground biommass and belowground biomass (soil organic matter stock and fine roots biomass) and selected abiotic factors

| Detailed data               | Abbreviations                                                                                                                                    |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Live woody tree biomass     | AGB                                                                                                                                              |
| Litter mass                 | litter                                                                                                                                           |
| Silt content                | Silt                                                                                                                                             |
| Clay content                | Clay                                                                                                                                             |
| рН                          | pН                                                                                                                                               |
| C/N                         | C/N                                                                                                                                              |
| Elevation                   | Elev                                                                                                                                             |
| Aspect                      | Aspect                                                                                                                                           |
| Slope                       | Slope                                                                                                                                            |
| Mean annual precipitation   | MAP                                                                                                                                              |
| Mean annual air temperature | MAT                                                                                                                                              |
|                             | Live woody tree biomass<br>Litter mass<br>Silt content<br>Clay content<br>pH<br>C/N<br>Elevation<br>Aspect<br>Slope<br>Mean annual precipitation |

Relative importance of predictors with 95% bootstrap confidence intervals

(LMG method, metrics are normalized to sum 100%):

A) Fine Roots Biomass 0-40 cm (R2 = 54.44%,);

B) Soil Organic Matter stock 0-40 cm (R2 = 54.79%).

the largest amount of biomass both aboveground and belowground was found in beech-dominated forests

 no statistically significant correlations were noted between aboveground biomass (live woody tree biomass from the forest inventory) and belowground biomass (soil organic matter and fine roots) found under beech-, spruce- and fir-dominated stands (i.e. secondary succession) atop Cambisols in the studied humid mountain-type area

 belowground biomass (i.e. SOM and FRB) is affected for the most part by abiotic factors such as morphologic position, climatic conditions, and soil properties

 we recommend using the results of multiple, fine-scale studies on the environmental background (i.e. biotic and abiotic factors) and forest management history for biomass and carbon modelling. Employing the same models may be an erroneous strategy for different study sites because of local environmental factors that strongly determine aboveground and belowground biomass stock