

Comprehensive global climate impact assessment for crop yields

Christoph Müller¹,

James Franke², Jens Heinke¹, Jonas Jägermeyr^{1,2,3}, Alexander Ruane³, Joshua Elliott², Elisabeth Moyer², Marie Dury⁴, Pete Falloon⁵, Christian Folberth⁶, Louis Francois⁴, Tobias Hank⁷, Cesar Izaurralde⁸, Ingrid Jacquemin⁴, Curtis Jones⁸, Wenfeng Liu⁹, Stefan Olin¹⁰, Thomas A. M. Pugh¹¹, Ashwan Reddy⁸, Karina Williams⁵, Florian Zabel⁷

¹ Potsdam Institute for Climate Impact Research, Germany² University of Chicago, USA³ NASA, USA⁴ University of Liège, Belgium ⁵ Met Office Hadley Centre, United Kingdom ⁶ International Institute for Applied Systems Analysis, Austria ⁷ Ludwig-Maximilians-Universität, Germany⁸ University of Maryland, USA⁹ EAWAG, Switzerland ¹⁰ Lund University, Sweden ¹¹ University of Birmingham, United Kingdom

Climate change impact assessments are often incomplete

- Sparse sampling of scenarios, models and crops
- Very high computational requirements
- Large uncertainties in drivers (climate scenarios, management) and modeled responses make interpretations of results from sparse sampling difficult
- We here employ potent, light-weight crop model emulators for
 - 9 different global gridded crop models
- to simulate crop yield impacts across the full CMIP5 and CMIP6 climate projections for
 - RCP2.6,
 - RCP4.5, and
 - RCP8.5

Step 1, the basis: the CTWN-A Experiment

The CTWN-A data cube: Regular disturbances of 31-year AgMERRA weather data

- **C**arbon dioxide: 360, 510, 660, 810 ppm (n_c=4)
- **T**emperatures: -1° C to $+6^{\circ}$ C, skipping 5° C (n_T=7)
- Water supply: -50 to +30, skipping -40 + fully irrigated (n_w =9)
- Nitrogen supply: 10, 60, 200 kgN/ha (n_N=3)
- Adaptation: regain lost growing season under warming (yes/no)

The full CTWN-A experiment is described by Franke et al. (2019).

Step 2: The CTWN-A crop yield emulators

 $Y = K_1$

- $+ \, K_2 C + K_3 T + K_4 W + K_5 N + K_6 C^2$
- $+ \, K_7 T^2 + K_8 W^2 + K_9 N^2 + K_{10} CW$
- $+ K_{11}CN + K_{12}TW + K_{13}TN + K_{14}WN$
- $$\begin{split} &+ K_{15}CT + K_{16}T^3 + K_{17}W^3 + K_{18}C^3 + K_*N^3 \\ &+ K_{19}TWN + K_{20}T^2W + K_{21}W^2 + K_{22}W^2N \\ &+ K_{23}CWN + K_{24}CTN + K_{25}CTW + K_{26}N^2C \end{split}$$
- $+ K_{27}N^{2}T + K_{28}N^{2}W + K_{29}T^{2}N + K_{30}T^{2}C$ $+ K_{31}W^{2}C + K_{32}C^{2}W + K_{33}C^{2}T + K_{34}C^{2}N$

The CTWN-A emulators are trained on the CTWN-A data cube, fitting a 3rd-order polynomial regression model

- for each 0.5° grid cell, crop and crop model with
- C, T, W, and N as regressors and
- fitting individual models for irrigated and rainfed as well as adapted (A1) and non-adapted (A0) systems.

They can well reproduce simulated climate change impact scenarios, including simulations based on GCM projections with inter-annual variability.

The full CTWN-A emulator suite is described by Franke et al. (2020).

Step 3: the CMIP5 and 6 archives

- All models that provided monthly daily mean near surface air temperature (tas) and monthly precipitation (pr) values
 - CMIP5: 45 models, CMIP6: 29 models

ACCESS1-0	ACCESS1-3	BCC-CSM1-1	BCC-CSM1-1-M	BNU-ESM	CanESM2	CCSM4	CESM1-BGC	CESM1-CAM5	CESM1-WACCM	CMCC-CESM	CMCC-CM	CMCC-CMS	CNRM-CM5	CSIRO-Mk3-6-0	EC-EARTH	FGOALS-g2	FIO-ESM	GFDL-CM3	GFDL-ESM2G	GFDL-ESM2M	GISS-E2-H	GISS-E2-H	GISS-E2-H	GISS-E2-H-CC	GISS-E2-R	GISS-E2-R	GISS-E2-R	GISS-E2-R-CC	HadGEM2-AO	HadGEM2-CC	HadGEM2-ES	INMCM4	IPSL-CM5A-LR	IPSL-CM5A-MR	IPSL-CM5B-LR	MIROC-ESM	MIROC-ESM-CHEN	MIROCS	MPI-ESM-LR	MPI-ESM-MR	MRI-CGCM3	MRI-ESM1	NorESM1-M	NICKESM1 - MF
RCP 2.6		Х	X	Х	Х	Х		Х	Х				Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х		Х		Х		Х	Х		Х	Х	Х	Х	Х	Х	Х	$\langle \rangle$	X
RCP 4.5 X	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	()	Х
RCP 8.5 X	Х	Х	X	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	X	Х	Х	Х	X	Х	X	Х	X	Х	X	х х	$\langle \rangle$	X
									ACCESS-CM2	ACCESS-ESM1-5	BCC-CSM2-MR	CAMS-CSM1-0	CESM2	CESM2-WACCM	CNRM-CM6-1	CNRM-ESM2-1	CanESM5p1	CanESM5p2	CanESM5-CanOE	EC-Earth3	EC-Earth3-Veg	FGOALS-f3-L	FGOALS-g3	FIO-ESM-2-0	GFDL-CM4	GFDL-ESM4	GISS-E2-1-G	HadGEM3-GC31-LL	IPSL-CM6A-LR	KACE-1-0-G	MIROC6	MPI-ESM1-2-LR	MRI-ESM2-0	NESM3	NorESM2-LM	NorESM2-MM	UKESM1-0-LL							
					S	SP1	RCP	2.6)	X I	X I	X I	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х			X I	X I	X)	$\langle \rangle$	$\langle \rangle$	$\langle \rangle$	()	X I	X X	X	X							
					S	SP2	RCP	4.5)	X I	X	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х			X	X	x)	$\langle \rangle$	<	$\langle \rangle$	()	K I	X X	X	Х							
					S	SP5	RCP	8.5)	X I	X	X	X	X	X	X	X	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	X	X	X)	$\langle \rangle$	()		()	X I	X	X	X							

EGU 2020, 8. May 2020. All rights with the authors.

Step 6a: growing season changes (1980-2010 vs. 2069-2099) in T

- CMIP6 cooler in RCP2.6 and warmer in RCP8.5
- ensemble and ensemble range smaller in CMIP6

EGU 2020, 8. May 2020. All rights with the authors.

P

Step 6b: growing season changes (1980-2010 vs. 2069-2099) in P

- wetter future, but CMIP6 dryer than CMIP5
- ensemble and ensemble range smaller in CMIP6

P

Step 7: emulated yield impacts

Ρ

all combined

year (AD)

Results: more uncertainty in impact models than in climate projections

CMIP6

EGU 2020, 8. May 2020. All rights with the authors.

Ρ

Results: ... and even stronger so in CMIP5

EGU 2020, 8. May 2020. All rights with the authors.

Response to CO₂ strongly affects crop model uncertainty share

EGU 2020, 8. May 2020. All rights with the authors.

ΡI

Conclusions

- The GGCMI CTWN-A experiment-based emulators (Franke et al. 2020) allow for an unprecedentedly large ensemble of crop yield projections, which can be employed to assess the full breadth of future climate scenarios
- Broad range of possible climate impacts projected for productivity of major crops
- There are substantial differences in
 - regional responses
 - crop model responses, especially with respect to the effects of elevated [CO₂]
- Next steps
 - better analysis of crop model specifics that lead to strong deviation in projected impacts
 - improve global management data to better represent diverse crop management systems in crop model simulations

References

- The GGCMI project
- Phase 1:
 - Elliott J, et al. The Global Gridded Crop Model Intercomparison: data and modeling protocols for Phase 1 (v1.0). Geoscientific Model Development 8, 10.5194/gmd-8-261-2015 (2015).
 - Müller C, et al. Global gridded crop model evaluation: benchmarking, skills, deficiencies and implications. Geoscientific Model Development 10, 10.5194/gmd-10-1403-2017 (2017).
 - Müller C, et al. The Global Gridded Crop Model Intercomparison phase 1 simulation dataset. Scientific Data 6, 10.1038/s41597-019-0023-8 (2019).
- Phase 2:
 - Franke J, et al. The GGCMI Phase II experiment: global gridded crop model simulations under uniform changes in CO2, temperature, water, and nitrogen levels (protocol version 1.0). Geosci Model Dev Discuss 2019, 10.5194/gmd-2019-237 (2019).
 - Franke J, et al. The GGCMI phase II emulators: global gridded crop model responses to changes in CO2, temperature, water, and nitrogen (version 1.0). Geosci Model Dev Discuss 2020, 10.5194/gmd-2019-365 (2020).

Thanks and invite

- Thanks to all GGCMI participants and data suppliers
- Come and join, Phase 3 (improved remake of the ISIMIP fast track in 2012) just starting
 - https://agmip.org/ag-grid-2/
 - https://www.isimip.org/
- We provide access to a very large data set on crop yields, input data and secondary outputs to help with your own analysis

