Research Centre Agroecology, Water and Resilience

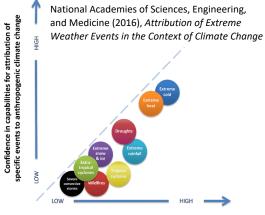
Towards multi-method and multi-scale attribution of global wildfire danger

EGU General Assembly

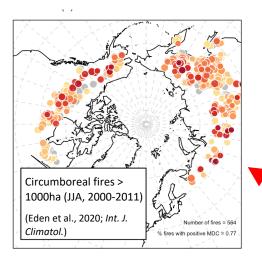
4-8 May 2020

Zhongwei Liu¹, Jonathan Eden¹, Bastien Dieppois^{1,2} and Matthew Blackett^{1,3}

¹ Centre for Agroecology, Water and Resilience, Coventry University, Coventry, UK (jonathan.eden@coventry.ac.uk) ² Department of Oceanography, MARE Institute, University of Cape Town, RSA ³ School of Energy, Construction and Environment, Coventry University, Coventry, UK



Attributing extreme fire weather events

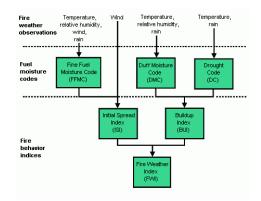

- Large fires across both hemispheres in recent years have led to inevitable • questions about how human-induced climate change may be altering the character of such events.
- Providing answers to these questions is a crucial step to increasing ٠ resilience to major wildfires.
- The link with climate change remains poorly understood (right) and ٠ wildfires are not a consistent focus for attribution studies.

Understanding of the effect of climate change on event type

Here, we take a first step toward a global framework for assessing risk in wildfire danger:

- Attribution of observed trends in fire weather, with initial focus on the (a) circumboreal region.
- (b) Towards tailoring attribution information to meet the needs of forest management activities.

Research Centre

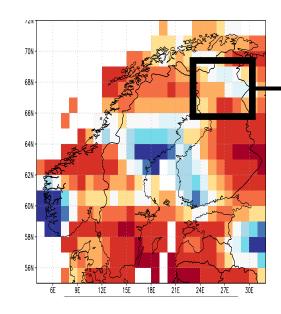

Preliminary methods and analysis

Approach

Pointwise empirical attribution approach to assess trends in annual maxima in summertime fire weather

Input data: Fire danger re-analysis

- Canadian Fire Weather Indices for 1980-2018; weather forcings from ERA-Interim (Vitolo et al., 2019; *Sci. Data*).
- Includes the Daily Severity Rating (DSR), a non-linear transformation of FWI.



Model fitting: GEV scaled with global mean surface temperature

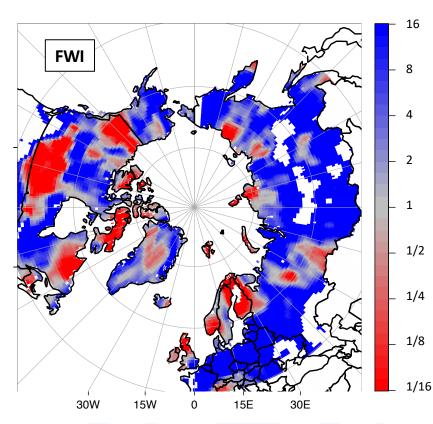
- Attribution statistics are produced at each grid point.
- Annual 5-day maxima in seven fire danger indices within a surrounding spatial grid fitted to a GEV.

$$F(x) = exp\left[-\left(1 + \xi \frac{x-\mu}{\sigma}\right)^{\frac{1}{\xi}}\right]$$
$$\mu = \mu_0 \cdot exp \ \frac{\alpha T}{\mu}$$
$$\sigma = \sigma_0 \cdot exp \ \frac{\alpha T}{\mu}$$

- Distribution assumed to scale with global mean temperature *T*.
- Uncertainty margins estimated using non-parametric bootstrapping with moving-block approach.

Risk ratios in the circumboreal region

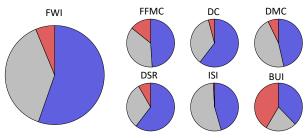
Research Centre Agroecology, Water and Resilience

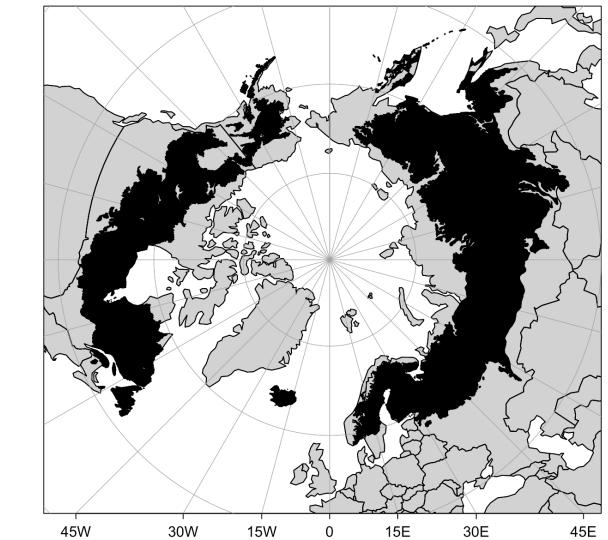

Risk ratio: probability of the event occurring in present vs past climates.

 $RR = P_1/P_0$

Risk ratios produced at each grid point for each index (only FWI shown here) to represent the 1961-2019 change in likelihood of an annual JJA maximum exceeding the observed 99th percentile.

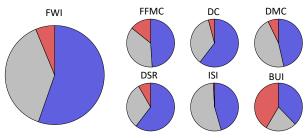
Two key points:

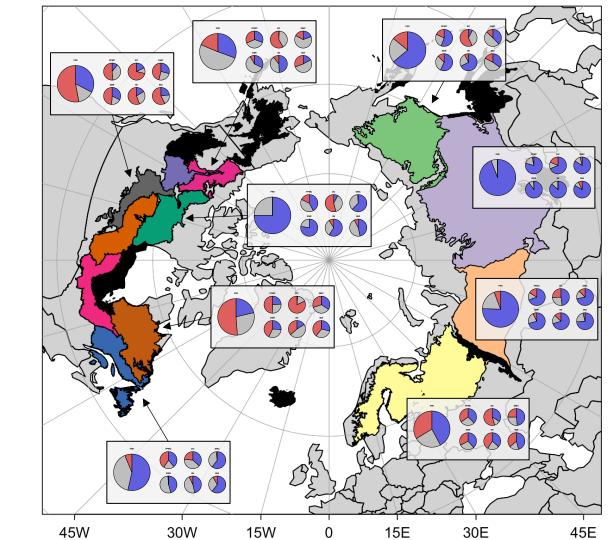

- The variability illustrates the implications of choosing an arbitrary event definition; for instance, risk ratios vary considerably across Fennoscandia.
- Risk ratio maps are not consistent for all indices. These differences should be understood and communicated.


Circumboreal overview

Proportion of extremes attributable to global temperature change across the boreal biome:

Blue: significant increase Red: significant decrease Grey: no change


The differences between the indices is of note, particularly given their relative importance to different stakeholders.


Circumboreal overview

Proportion of extremes attributable to global temperature change across the boreal biome:

Blue: significant increase Red: significant decrease Grey: no change

Further distinction is made between several boreal 'ecoregions' (regions of homogeneous vegetation and ecological characteristics).

Summary and outlook

- Preliminary steps towards a framework for assessing fire risk at continental and global scales demonstrate the flexibility of a pointwise approach to empirical attribution.
- Effective forest management should consider the **response of the natural environment** to fire activity and can be supported by provision of fire weather attribution information at the **ecoregion-scale**.
- Inter-index differences will be a target of further study; stakeholder engagement will inform how different indices are understood and interpreted by the end user.

Next steps:

- Application to additional global and regional model ensembles, including establishing a robust model evaluation and bias correction approach.
- Attribution of fire weather associated with a collective of recent fire events, initially throughout the boreal region.
- Potential expansion to other fire-prone regions of the world.