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The Elbe catchment

- 4th largest river catchment of EU

- Strong flood events in 2002, 2006, 2013

- Low-flow period 2003, 2005

à Need for accurate prediction of streamflow
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Methods

- Streamflow prediction from E-OBS gridded dataset of precipitation + temperature

- Transfer Convolutional-LSTM Architecture to Hydrology

- Aim: Exploit spatio-temporal patterns in gridded climate data

- Baseline models: 

- Spatially-distributed Physical model (mHM: Samaniego L., R. Kumar, S. Attinger (2010))

- Non-spatially distributed LSTM on catchment means
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Patterns:
- Spatial
- Temporal

- 1950 – 2013
- Daily mean values
- Spatial Resolution 0.1°
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ConvLSTM

Uncertainty Quantification:

• Aleatoric uncertainty by estimating standard deviation in gaussian loss function (Kendall & 

Gal, 2017)

• Epistemic uncertainty: Drop-out in inference
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ConvLSTM

Strided convolution operations (instead of pooling)
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Results: ConvLSTM

• Accurate modelling of dynamics

• Meaningful uncertainty bands

• Oscillations

• Underestimation of peak flows
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Results: ConvLSTM vs. Physical Model
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Results: ConvLSTM vs. LSTM

LSTM

ConvLSTM
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Results: Summary

• Deep Learning allows for accurate prediction incl. uncertainty from 2 inputs

• Similar predictions to physical model but oscillations

• Non-spatially distributed LSTM achieves similar accuracy as spatially-distributed 

ConvLSTM

à Flexibility of DL does not guarantee more accurate predictions

à Spatial patterns not exploited / not relevant
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Results: Discussion

à Spatial patterns not exploited / not relevant

Possible explanations:

• Uncertainty in E-OBS gridded dataset

• Short-comings in model training / architecture

• Similar to known issue in process-based modelling:

Lumped models might be more accurate than distributed models
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Outlook

• Systematic Hyperparameter tuning

• Analyze: Reasons for limited use of spatial information

• Interpretation: Saliency Maps

• Runoff-relevant subregions in catchment

• Relevant time-lags

• Apply on real-time Remote-Sensing Data
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