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General aim of the work

Understanding regional and local structural and thermal parameters in the
crust and upper-mantle of the central Europe (Western Carpathians)

Consistent interpretation of:
- crustal & lithospheric structure, Moho & LAB discontinuities
- temperature & composition & structure estimation at depth

v' Joint petrological, geological and geophysical characterization of the
lithosphere in the studied region

By integrated modelling we mean:

- 3D joint inversion of magnetotelluric, gravimetric and seismic data
for crustal structures by coupling of electrical conductivity (o),
density (p) and seismic velocity (v) (JIF3D tool)

- 3D geophysical-petrological modelling of the lithosphere and sub-
lithospheric upper mantle within an internally consistent
thermodynamic-geophysical framework, where all relevant
properties are functions of temperature, pressure and composition
(Litmod3d package)



Methodology Scheme
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- combines petrological and geophysical
modeling within an internally consistent
thermodynamic-geophysical framework
All relevant properties are
functions of temperature,
pressure and composition
and calculated by LitMod. %
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JIF3D - Crustal model
LitMod3D — model is composed from JIF3D crustal model from step one and sub-
crustal model, calculated based on petrology and constrains



Step 1: Crustal Joint Inversion

JIF3D — 3D joint inversion framework (Moorkamp et al.,
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- between densities and seismic velocities (app. linear) R R .
- between resistivity and velocity (structural dependence) H \
o & R\!mw?
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b) Cross-gradient (Gallardo & Meju, 2003; Moorkamp et al., 2013) — used in our modelling

f(x,y,.2) = Vm,(x,y,2) X Vim,(x,y.2) = f(x,y,2)

Forced similarity
of anomaly shape
for all models




Modelled data and area
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Position of the 2T profile (originally deep seismic reflection profile) in the Carpatho-Pannonian region.

The basic tectonic map was modified after Majcin et al. (2017).

Key: 1 — European platform, 2 — Foredeep units, 3 — Outer Carpathian Flysch Belt, 4 — Klippen Belt, 5 —
Inner Carpathian units, 6 — Neogene volcanites on the surface, 7 — Neogene and Quaternary

sediments. Circles indicate MT sites position.



Results of joint inversion - 2T

3-D Joint Inversion Resistivity Model
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There are no seismic data suitable for use within our 3D joint inversion. Only constrains are used from

CELEBRATION 2000 models and deep seismic reflection section 2T



Results of joint inversion — MT models
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Most significant difference is in the position of Carpathian Conductivity Anomaly Zone (CCZ), due to

offset of Pieniny Klippen Belt (PKB)
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Comparison with other data
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dashed line following from Cerv et al. (2001).
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Step 2: Mantle modelling

Litmod3D — (Fullea at al., 2009)

« Combines forward petrological and geophysical modelling
Model parameters coupling:

a) Direct relationship

- all relevant properties are functions of temperature,

pressure and composition — only mantle is calculated

Background global model based on Alasonati-Tasarova et al., (2016). The main changes are situated on the
contact zone between European platform and ALCAPA.

Thicknesses: EU Mantle Transition zone EU ALCAPA
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Model grid convertor — LitMod <-> MT
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Geolocated model data are regrided for area

(120x170km)

Vertical discretization of MT mesh is restricted to 32,
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due to JIF3D restrictions

The 3D regridding tool is based on Amidror, I. (2002)

for scattered data interpolation with extrapolation

correction



Conductivity model based on Litmod3D
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- Crustal model is imported from previous phase and mantle part is calculated by Litmod3D.

- The mantle part is fixed, only the crustal part undergoes new inversion process to fit the surface MT

data (hnRMS improved from 3.8 to 3.6).

- The best fitting geoelectrical model is converted back to LitMod3D package. Within the process, the

depth of Moho and LAB need to be changed in LitMod3D, to fit other geophysical data.



Conductivity model — tests

Integrated model with LitMod3D mantle part.
The new inversion with fixed mantle shows
improved fit of MT data and the resolution of

CCZ.
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Thermal modelling
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Composition effects

Change in model resistivity for different compositions

Depth [km]

0 -
Lit-Man  Si02 Al203  FeO MgO Ca0 Na20  Mg#
ALCAPA  44.8 26 8.6 41.2 24 0.14 90.5
ALCAPAL 4025 142 9.15 1259 1029 217 71.0
-504 ALCAPA2 459 1.79 8.25 4295 122 0.01 92.4
PUM 45 4.45 8.05 37.8 3.55 0.36 89.3
100
The compositions were determined from bulk xenolith
\ default samples information, collected in the Pannonian Basin from
1504 1 - Comp. ALCAPA1 _
Comp. ALCAPA2 Balaton Highland (ALCAPAL, see Table) and from
— Water content ) .
~ Melt content change Kapfenstein (ALCAPAZ2). Water content change is modeled
200 4———7——T T T T T only in the mantle layers. In similar way the melt is
0 1 2 3 4 5 6 7 8
Resistivity [Log(Ohm.m)] distributed through the composition (partial melt in Na20O,

Si02, bulk value).

We are testing hypothesis, which can explain shallower electrical LAB depths in comparison to

seismic models within the Pannonian basin.



Conclusion

Joint inversion modelling for crust shows, that within the Carpathian block itself physical
contrasting crustal segments exist. An oblique collision of the Western Carpathians with
the European Platform occurred by the gradual shifting of various crustal segments with

different geological composition along subvertical shear-zones.

3D modelling necessary to reveal well known CCZ, which was not mapped by 2D model

due to offset of 20 km in north south direction along profile

In southern part of the profile (neovulcanic area) melt and its penetration in NEE

direction is shown

The joint inversion process we used improves geological meaning of the density model,
but nRMS of MT model is higher than in single MT model

Our integrated 3D MT modelling, based on geophysical-petrological mantle model,
improves the fit of MT data and better estimates the LAB depth

Moreover, the mantle part is fully constrained by density and velocity model

New parameters can be studied by MT modelling such as water and melt content,

composition and effect of different temperature distribution.
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