

Characterisation Campaign at the Gobabeb RadCalNet Site in Support of Satellite Calibration and Validation Activities

Morven Sinclair, Chris McLellan, Agnieszka Bialek, Emma R Woolliams, Sarah Taylor, and Nigel P Fox

RadCalNet (Radiometric Calibration Network)

- Provides automated surface and atmospheric in-situ data as part of a network including multiple sites for the purpose of optical imager radiometric calibration in the visible to shortwave infrared spectral range
- The key goals of RadCalNet:
 - To standardise protocols for collecting data
 - To process site data to top-of-atmosphere reflectance
 - To provide uncertainty budgets for automated sites traceable to the international system of units
 - 4 current international locations: La Crau, France, Railroad Valley, Nevada, Baotou, China, Gobabeb, Namibia
- Working under the guidance of Committee on Earth Observation Satellites (CEOS) Working Group of Calibration and Validation (WGCV) and the Infrared Visible Optical Sensors (IVOS)

RadCalNet (Radiometric Calibration Network)

- All RadCalNet sites run automated instrumentation (Gobabeb mast pictured)
- Upwelling radiance is retrieved near ground level and is converted to nadir-viewing Bottom-of-Atmosphere reflectance
- The downwelling irradiance is typically derived through radiative transfer modelling
- This is then processed and supplied through the RadCalNet web-portal for use in vicarious satellite calibration
- Product: SI-traceable, spectrally resolved TOA reflectance for a nadir view at 30 min intervals from 9 am to 3 pm

Gobabeb, Namibia, Africa

- Providing data since July 2017
- Selected through a global search with assessment of spectral characteristics, spatial uniformity and probability of clear skies

Permanent Instrumentation

- CIMEL CE 318 12-filter BRDF sun photometer
- Measures 12 spectral bands, from 414 nm to 1640 nm
- Continuous CIMEL and weather station measurements:
 - Principle plane, almucantar, sun radiance, ground radiance
 - Surface pressure and temperature, column water vapor and ozone
- View of weather/cloud conditions from SkyCam

Field Measurement Preparation

- Regular site visits and field maintenance carried out by NPL and staff at Gobabeb Research and Training Centre
- Opportunity to undertake ground surface characterisation measurements to ensure quality and consistency of site data
- Also completed initial ground characterisation investigation into a new site for similar instrumentation
- March 2020 field campaign:
 - Ongoing data analysis
 - Field considerations and corrections, along with preliminary ASD results are displayed in later slides

Previous Site Characterisation Ground Reflectance

2017

- Site homogeneity
- Nadir ground reflectance (ASD)
- Hyperspectral BRDF (GRASS)
- **2020**
 - New site homogeneity
 - Nadir ground reflectance (ASD)
 - Multi-band imaging survey (MAIA)
 - Drone imaging

Previous Site Characterisation Ground Reflectance

- Important to consider field of view (FOV) when comparing data
- Large discrepancy in data depending on grain size and vegetation distribution within target FOV
- 'Scene size'
 important for
 optimum FOV and
 representative data
- Regular ground reflectance characterisation has been completed since the site was developed
- Necessary to maintain data quality

Preliminary Panel Testing

- To ensure quality and reproducibility of measurement data, preliminary testing was carried out on calibrated reference panels on location under natural light conditions
- Notable that ambient light is changing significantly over the 15 minute test period

SZA Gobabeb

Ambient Light Relative to Solar Noon Gobabeb, 12th March 2020

- Ambient light stability follows the change in the cosine of the solar zenith angle
- The same 1hr period at midday provides a longer period of stable light than 1hr at 3pm
- The faster change in light stability will affect measurements taken in the late morning/late afternoon
- Shadows also become an issue when working with reference panels at solar noon

- To ensure we can account for this change in ambient light during the target testing period we use the DFOV method
- Simultaneous acquisition of reference panel and ground measurements
 - One static spectroradiometer constantly recording the 18" panel
 - One roaming spectroradiometer conducting the survey with regular scans of the 10" panel between targets
 - Comparable measurements taken within seconds of each other

Simultaneous ASD Measurements (Reference Panel)

ASD Reflectance Data @ SVC Ref Panel Times

 ~47 minutes between first and last reference measurement

National Physical Laboratory

• 15% variation in white panel over this time period

- Static ASD spectroradiometer continuously running measurements on 18" Spectralon panel
- Monitoring the change in ambient light

SVC Uncorrected and Corrected Reference Panel Data (During Survey)

SVC HR-1024i Uncorrected Data of Reference Panel

- SVC spectroradiometer moving down survey line
- Measurement of mobile 10" Spectralon reference panel between every 3 target ground reflectance measurements

SVC Corrected Reference Panel Data

- SVC spectroradiometer panel data corrected for change in ambient light during test period against the static ASD reference data
- Confidence to then apply the same method to the ground reflectance measurements

Initial Results of Field Reflectance Survey

- Static ASD reference panel data synchronised to ground target measurements
- Only the first 20 measurements are shown in this example, covering a ~10min test period
- Less change in ambient light over this shorter period

SVC Uncorrected and Corrected Survey Data

SVC HR-1024i Uncorrected Data

SVC Corrected Data

- SVC spectroradiometer moving down survey line
- Target ground reflectance measurements over same 10min time period

hy10FCV1#1_0000.sig.jpg

- SVC survey data corrected with the static ASD data
- Homogeneity/heterogeneity considerations of FOV during each target scan
- Variations in measurements may be explained by differing target FOVs

hy1DFOV1#1_0014 sig jpg

Continuing Analysis

- DFOV hyperspectral imaging survey
 - Continued processing
- Drone image and terrain model
 - Overview of potential new instrumentation site
- Multi-band MAIA imaging survey
 - Continued processing with the Field Spectroscopy Facility, NERC, Edinburgh
 - Matching wavelength intervals with Sentinel-2
 - Multi-scale detail
- Importance of regular field measurements in vicarious calibration projects
- Potential to further analyse level and importance of surface homogeneity on various scales

514n

Acknowledgements NERC Field Spectroscopy Facility DFOV processing

- Bouvet M, Thome K, Berthelot B, Bialek A, Czapla-Myers J, P. Fox N, Goryl P, Henry P, Ma L, RadCalNet: A Radiometric Calibration Network for Earth Observing Imagers Operating in the Visible to Shortwave Infrared Spectral Range, Remote Sens. 2019, 11, 2401;
- https://www.radcalnet.org/#!/