

THE EFFECT OF FLOW VARIABILITY ON THE RIVER MEANDERING DYNAMICS

Francesca Bassani¹, Matteo Bernard Bertagni¹, Luca Ridolfi¹, and Carlo Camporeale¹ ¹Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Italy

Abstract ID: EGU2020-20909 GM5.1 Fluvial Systems: Dynamics and Interactions Across Scales

EGU20 - F. Bassani, et al. (francesca.bassani@polito.it)

MOTIVATION

What are the effects of discharge variability on the meander evolution?

METHODS

Numerical simulations

Theoretical analysis

NUMERICAL MODEL

- Ikeda, Parker and Sawai fluid dynamic model
- The simulations provide the dynamics of the river axis by solving the equation:

$$v(s) = -bEUC(s) + bEU\frac{2C_F}{H}(P+1)\int_{0}^{s} C(t) e^{-\frac{2C_F}{H}(s-t)} dt$$

v(s): migration rate along the river centerline

- E: coefficient of bank erodibility, assumed equal to 10⁻⁶
- C: curvature
- U: stream velocity
- C_F : friction factor
- *H*: flow depth
- P: Parker number for sediment dynamics

Functions of the discharge Q

- Assumption: constant river width
- Initialization: a straight line perturbed by a weak random noise

2h

NUMERICAL MODEL - INPUT

(CC)

RESULTS

- S is the sinuosity (the ratio of the river length to the linear distance between its endpoints) ٠
- λ_c is the mean curvilinear wavelength

Compared with the case of constant flow (red lines), the discharge variability (blue lines) slows down the formation of the meanders and induces lower λ_c . It also delays the occurrence of cutoff events, identified by the sinuosity saturation.

THEORETICAL VERIFICATION

Why does discharge variability slows down meanders evolution?

- Solution of the meandering equation v(s) for the Kinoshita curve C(s)
- Channel erosion rate E_r averaged over one wavelength ($\lambda = 2\pi/q$): $E_r = \frac{q}{2\pi} \int_0^{2\pi/q} v(s) \cdot C(s) ds$
- Relationship between E_r and the river depth:

İ)

NUMERICAL VERIFICATION

Why does discharge variability slows down meanders evolution?

• Same initial planimetry (Fig. 1)

• Depending on the values of the discharge, the meander grows or decreases (**Fig. 2**)

CONCLUSIONS

- Evolution of a meandering river: Long-term → dominated by the filtering action of cutoff events Short-term → strongly affected by discharges;
- With respect to the case of constant discharge:
 (i) the flow variability slows down the formation of meanders (the sinuosity increases more slowly)
 (ii) the reach elongation (induced by the local bank erosion) shows a significant delay;
- Simulations and theoretical analysis reveal that the higher the discharge, the bigger is the planimetric dilatation of the meander bend, resulting in lower curvilinear wavelengths;
- A single constant value of discharge does not yield to the same temporal and spatial scales typical of the evolution of a meander bend forced by a stochastic flow.

THANK YOU FOR YOUR ATTENTION

EGU20 - F. Bassani, et al. (francesca.bassani@polito.it)