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The multi-fluid approach

• The multi-fluid approach applies a conditional filter to the high-

resolution governing equations, giving a set of prognostic equations 

for 𝑛 fluid partitions. These allow for e.g. net mass transport, and 

horizontal propagation of convection.

• The filtering introduces terms involving the exchange of mass, 

momentum, and buoyancy between the fluids; these need to be 

parametrised. They are the equivalent of entrainment/detrainment.

• To first order, the fluids share a single pressure; deviations from this 

pressure within each fluid also need to be parametrised.

Two-fluid single column results

• We construct reference two-fluid single column solutions from the 

fully resolved solution (Fig. 1a) by assigning 𝑤 ≤ 0 fluid to partition 

0, 𝑤 > 0 fluid to partition 1, and horizontally averaging. This choice 

forces the transferred vertical velocity to be 𝑤𝑖𝑗
𝑇 = 0.

• We make the closure assumptions:

− Buoyancy transferred from fluid 𝑖 to fluid 𝑗: 𝑏𝑖𝑗
𝑇 = 𝑏𝑖 ± 𝐶 𝑏𝑖

− Difference of pressure in fluid 𝑖 from mean pressure 𝑃: 𝑝𝑖 = −𝛾
𝑑𝜎𝑖𝑤𝑖

𝑑𝑧

− Volume fraction transfer rate from 𝑖 to 𝑗: 𝑆𝑖𝑗 = max −
𝑑𝑤𝑖

𝑑𝑧
, 0

This approach allows a strong circulation to develop even at the 

coarsest possible resolution (fig. 3).

Future work

• Find a better closure for the volume fraction transfer; prognosing 𝜎

well is at the heart of the convection parametrisation problem.

• Base the transferred buoyancy and momentum on some knowledge

of higher-order subfilter moments (e.g. variances).

• Move towards higher Ra, as the true atmosphere is turbulent.

• Move towards the grey zone from the coarse-resolution limit.

Modern NWP and climate models are run at resolutions too fine for 

the assumptions underlying traditional convection schemes to be 

valid. However, resolutions are still orders of magnitude too coarse 

to resolve all dynamically relevant convective processes. To gain 

insight into developing parametrisations at these intermediate 

scales, we consider the grey zone of an idealised model: 2D dry 

Rayleigh-Bénard convection.

The grey zone of Rayleigh-Bénard convection

• The problem: viscous Boussinesq fluid confined between two 

smooth horizontal plates separated by a distance 𝐻, with a fixed 

buoyancy difference Δ𝐵 between bottom and top. Convection 

develops if:

Ra ≡
Δ𝐵 𝐻3

ν κ
> Ra𝑐 ≃ 1700

• The circulation generates a vertical heat flux (normalised by the heat 

flux of the stationary reference state):

Nu ≡
𝑤𝑏 − κ Τ𝜕𝑏 𝜕𝑧

κΔ𝐵/𝐻

• What happens if we systematically coarsen the horizontal 

resolution?

Multi-fluid single-column modelling 

of Rayleigh-Bénard convection
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Figure 1: 
Rayleigh-Bénard convection at Ra
≈ 105 for a range of horizontal 
resolutions, after a steady state 
has been reached. The colours are 
buoyancy, the arrows are velocity 
vectors.
The convection is fully resolved in 
a), showing clear convective rolls. 
As the resolution decreases, less 
of this structure is picked up (b). 
When the resolution becomes 
similar to the length scale of the 
rolls, 𝜆𝑐 , the convection pattern 
projects strongly onto the grid 
(c). This is reminiscent of grid-
point storms in NWP. Decreasing 
the resolution even further, and 
convection does not develop at 
all (d). The implicit filter of the 
grid has reduced Ra to below Ra𝑐 .

Figure 2:
Normalised heat transport as a 
function of horizontal resolution. 
Generally the heat transport 
decreases with resolution, as we 
would expect due to less of the 
advective motion being resolved. 
However, close to 𝜆𝑐 the heat 
transport can be overestimated 
due to projection onto the grid. 
This is one of the problems which 
makes the grey zone so difficult 
to work in. At the coarsest 
resolutions there is no motion so 
the heat transport is entirely 
diffusive.

• Each fluid has its own 
volume fraction (𝜎𝑖), 
velocity, and buoyancy. 
This means the fluids can 
move through each other.
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Figure 3: 
Results of two-fluid single-column model with 𝐶 = 0.5, 𝛾/𝜅 = 15 (solid lines) versus 
high resolution reference (dashed lines). The two-fluid model is initialised from a 
resting state. The model captures the profiles of total buoyancy, vertical velocity and 
pressure (black lines) very well, as well as the pressure and buoyancy within the 
individual fluids (coloured lines). This leads to a strong heat transport of Nu ≈ 6.



Multi-fluid Boussinesq equation set

∂σi

∂t
+∇ · (σiui) =

∑

j

(σjSji − σiSij) (1)

∂σiui

∂t
+∇ · (σiui ⊗ ui) = σibik̂ − σi∇(P + pi) + σiν∇

2
ui +

∑

j

(

σju
T
jiSji − σiu

T
ijSij

)

(2)

∂σibi

∂t
+∇ · (σiuibi) = σiα∇

2bi +
∑

j

(

σjb
T
jiSji − σib

T
ijSij

)

(3)

∑

i

σi = 1 (4)
∑

i

∇ · (σiui) = 0. (5)

Here σi,ui, bi, pi respectively denote the volume fraction, velocity, buoyancy, and difference
from the mean pressure, within fluid partition i; Sij denotes the rate of volume fraction
transfer from fluid i to fluid j; bTij denotes the buoyancy transferred from fluid i to fluid j

when mass is exchanged; and u
T
ij denotes the velocity transferred from fluid i to fluid j when

mass is exchanged. Subfilter viscous terms, Reynolds stresses, and the unresolved part of
pressure drag have been omitted.
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