

QUASI-NEWTON METHODS FOR ATMOSPHERIC CHEMISTRY SIMULATIONS

EGU CONFERENCE, 4-8 May

Austria, 2020

Emre Esenturk

(with Luke Abraham, Scott Nicholls, Alex Archibald, John Pyle

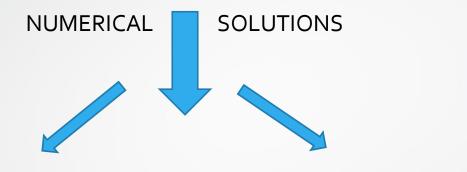
Christina Mitsakou, Paul Griffiths)

UK Met Office United Model (UM) and UK Chemistry & Aerosol (UKCA)

- UM: ONE MODEL FOR ALL (DECADAL OZONE PREDICTIONS, CLIMATE PREDICTIONS, WEATHER FORECASTS ETC.
- UM CONSISTS OF TRANSPORT DYNAMICS, CONVECTION, PHOTOLYSIS, CHEMISTRY-AEROSOL PROCESSES (UKCA) ETC
- UKCA CONSISTS OF CHEMISTRY-AEROSOL PROCESSES, EMISSIONS, WET/DRY DEPOSITIONS ETC
- UKCA IS SEQUENTIALLY COUPLED TO UM TRANSPORT DYNAMICS

Two Problems: Speed and Robustness

1 ATMOSPHERIC CHEMISTRY & AEROSOL CALCULATIONS ARE EXPENSIVE! IN THE BASIC TEST-SETTING (STRATOSPHERE-TROPOSPHERE-NO AEROSOL) *A MODEL YEAR TAKES 1 DAY ON THE NATIONAL SUPERCOMPUTER (ARCHER) *TYPICALLY UKCA TAKES %20-40 OF COMPUTATIONAL RESOURCES* 2 SOLVING ATMOSPHERIC CHEMICAL NETWORKS POSES A "STIFF PROBLEM" BASIC TEST-SETTING CONSISTS OF 75 SPECIES AND 283 REACTIONS *ORDERS OF MAGNITUDES OF DIFFERENCES IN THE LIFETIME OF SPECIES *METHANE> 5 YEARS, OH


Chemical Reactions as Differential Equations (DEs)

Let $c(t) = (c_1(t), c_2(t), ..., c_N(t))$ denote the vector of species concentrations at a given time

$$\frac{dc}{dt} = f(c) = P(c) - L(c) + E(c) - D_{wet}(c) - D_{dry}(c)$$
(1)
$$c(0) = a,$$
(2)

P(c): Production termsL(c): Loss termsE(c): Emission terms $D_{wet}(c): Wet deposition terms$ $D_{dry}(c): Dry deposition terms$

Numerical Methods for Solving DEs

1 EXPLICIT METHODS

- DIRECT, QUICK AND HANDY

- LESS STABLE

2 IMPLICIT METHODS

- INDIRECT AND LABORIOUS
- MORE STABLE

Example: FORWARD EULER $c(t + \Delta t) = c(t) + f(c(t))\Delta t$ Example: BACKWARD EULER

 $\boldsymbol{c}(t + \Delta t) = \boldsymbol{c}(t) + f(\boldsymbol{c}(t + \Delta t))\Delta t$

where Δt is the time-step of the numerical scheme

Time Integration in the UKCA: The ASAD Framework

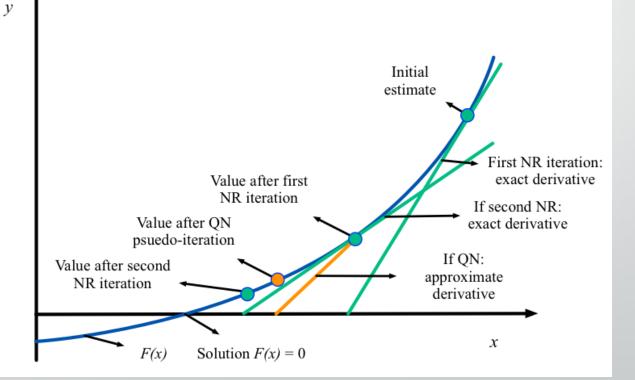
THE UKCA VERSION OF THE ASAD PACKAGE

- USES BACKWARD EULER WITH FIXED TIME-STEP
- USES **NEWTON-RAPHSON ALGORITHM** <u>TO SOLVE</u> THE NONLINEAR ALGEBRAIC EQUATION:

$$F(c) = \frac{c - c_*}{\Delta t} - f(c) = 0.$$

Newton-Raphson Algorithm

Newton-Raphson Algorithm computes the solution <u>ITERATIVELY</u> taking higher dimensional derivatives (The Jacobian) at each step and solving the linear equation


1st STEP
$$\int J(c^k)(c^k) = DF(c^k) \equiv Derivative of F$$

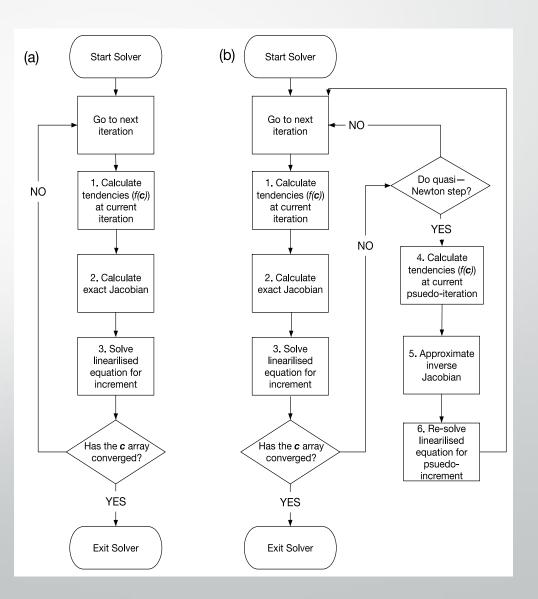
2nd STEP $\int J(c^k)(\Delta c^k) = -F(c^k) \longrightarrow Solve linear system$
 $\Delta c^k = c^{k+1} - c^k$

VERY COSTLY !

Newton-Raphson (NR) X Quasi-Newton (QN)

There are additional steps in the ON algorithm BUT the numerical steps are SIMPLER AND EFFICIENT

> Broyden (1965), Shanno (1970), Fletcher (1970), Goldfarb (1971), Davidon (1991).


INSTEAD OF NR, USE QUASI-NEWTON (QN) STEPS ! (APPROXIMATE DERIVATIVES FOR THE JACOBIAN)

Flow Chart for the QN Implementation

ON IMPLEMENTATION FOR THE UKCA

TWO-FOLD SAVINGS WITH QN STEPS

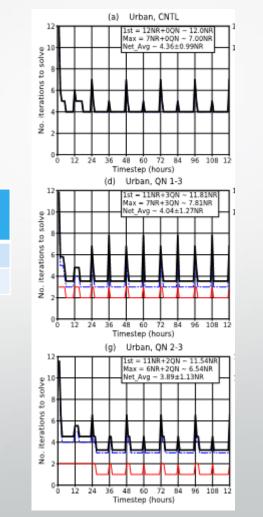
- 1) AVOID RECONSTRUCTION OF THE JACOBIAN
- 2) <u>RECYCLE THE INFORMATION</u> <u>WITHIN AN ITERATION TO FAST</u> <u>SOLVE THE LINEAR EQUATION</u>

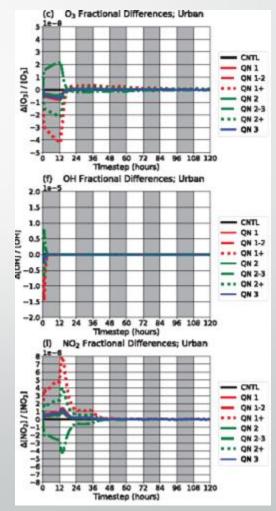
UKCA Box-Model (UKCA_BOX)

<u>UKCA BOX</u>: Highly controlled simplified environment for simulation of chemical reactions

Developed by Scott A. Nicholls (U. Cambridge, 2017)

ADVANTAGES


- 1) ALLOWS ONE TO OPTIMISE THE MODEL OPTIONS BEFORE RUNNING A FULL UM SIMULATION
- 2) RUNS ON A SINGLE PROCESSOR CORE: MUCH CHEAPER & FASTER THAN FULL SIMULATION !


An Urban Scenario with UKCA_BOX

WHY URBAN SCENARIO?: Better representative of atmospheric environments

	Full	Newton	Raphson	Quasi-Newton Method
	Method			
CPU time for 1000 calls	160 ± 3.1 ms			42 ± 0.71 ms
Wallclock time 1000 calls	157 ± 1.8 ms			42.9 ± 0.15 ms

Ref: Esenturk et. al., Geo. Mod. Dev., 2018

Full UM-UKCA Simulations

ON METHOD OFFERS TWO-FOLD ADVANTAGE

Advantage 1: Increased speed by up to %13 in chemistry routines

Scheme	Pure Chemistry		Chemistry & Ae	Pure Chemistry		
Cores	432		432		216	
Simulation	CNTL	QN2-3	CNTL	QN2-3	CNTL	Q N2 -3
Dynamics	12123 ± 22	12099 ± 23	15117 ± 28	15297 ± 27	18881 ± 27	187 43 ± 30
Chemistry	4228 ± 26	3678 ± 16	4725 ± 28	4123 ± 19	9102 ± 96	787 5 ± 75
Chemistry Speed-up (%)	13.00		12.74		13.48	
UM Speed-up (%)	2.33		1.81		3.59	

Advantage 2: Increased robustness in tough atmospheric environments (e.g. boundary layers)

	Scheme	Number of	Simulation	Number of halving	
		Cores		steps	
	Pure Chemistry	C C	CNTL	457344	
		216	QN2-3	270101	
' '		432	CNTL	436048	
			QN2-3	256019	
	Chemistry &		CNTL	544532	
	Aerosol	432	QN2-3	328836	

Ref: Esenturk et. al., Geo. Mod. Dev., 2018

Full UM-UKCA Simulations

ON METHOD DOES NOT AFFECT ACCURACY

Define <u>Normalised Mean Absolute Difference</u> (NMAD) and <u>Normalised Root Mean Square Difference</u> (NRMSD)

$$NMAD_{S} = \frac{\sum_{i} |c_{S,nr}^{i}(T) - c_{S,qn}^{i}(T)|}{\sum_{i} |c_{S,nr}^{i}(T)|}$$

$$\text{NRMSD}_{S} = \sqrt{\frac{\sum_{i} |c_{S,nr}^{i}(T) - c_{S,qn}^{i}(T)|^{2}}{\sum_{i} |c_{S,nr}^{i}(T)|^{2}}}$$

Chemistry	Species	Comparison	NMAD	NMRSD	NMB
No Aerosol (432 cores)	ОН	CNTL vs QN2-3	3.6986 10 ⁻⁸	3.6019 10 ⁻⁸	3.0382 10 ⁻⁹
No Aerosol (432 cores)	Ozone	CNTL vs QN2-3	8.8 ₃₇₄ 10 ⁻⁷	8.9908 10 ⁻⁷	7.376110 ⁻⁷

Comparison of Newton-Raphson Vs Quasi-Newton method by the metrics NMAD and NMRSD (for 20-year model run)

