Fractionation of soil organic carbon

under different land management in dry tropics, south India

Eito Nonomura¹, Soh Sugihara¹, Mayuko Seki¹, Hidetoshi Miyazaki², Muniandi Jegadeesan³, Pandian Kannan³, and Haruo Tanaka¹

¹Tokyo University of Agriculture and Technology, Tokyo, Japan (<u>s190131r@st.go.tuat.ac.jp</u>) ²Global Environmental Forum, Tokyo, Japan ³Tamil Nadu Agricultural University, Tamil Nadu, India

Background and objective

- An understanding of the mechanisms of SOC stabilization is essential to develop the appropriate management for C sequestration and soil health
- In southern India, soil C stocks are inherently low in cropland, despite relatively high clay contents (Clay>ca. 30%, OC<ca. 5 g C kg⁻¹ soil)
- Physicochemical parameters (e.g. Al and Fe contents, exchangeable Ca) affect SOC content and stabilization

To improve the SOC dynamics in southern India, we...

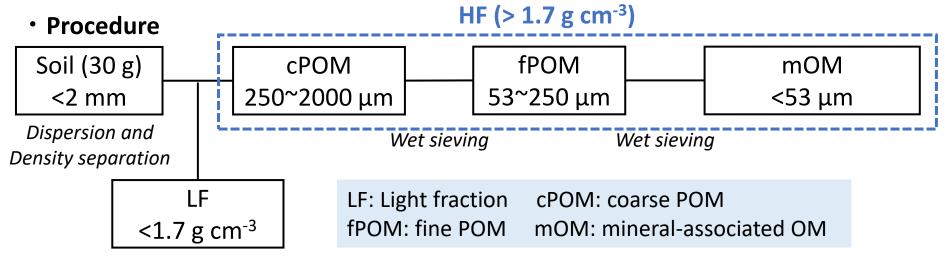
- (1) evaluated the effect of land management on SOC accumulation
 by physical fractionation, and
- (2) investigated the drivers of C accumulation for each fraction

Materials and Methods – Site description

- Tamil Nadu State, southern India
- 2 representative sites for Vertisols and Alfisols
- > We collected topsoil (0-10 cm) from 3 treatment

Study site

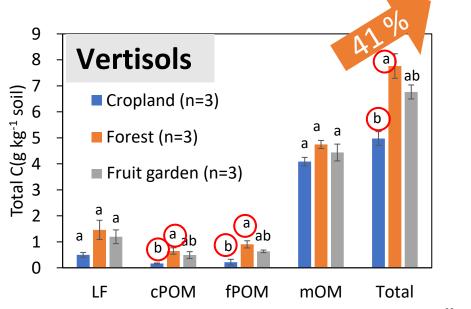
Vertisols	Cropland	Alfisols	Cropland: C
Forest (>30 yrs)	Fruits garden (>10 yrs)	Cropland (+FY manure: 5 yrs : C+M)	Cropland (+FY manure and lime: 5 yrs: C+ML)


Table Physico-chemical properties of Vertisols and Alfisols

		pH(H ₂ O) TC	Al _o	Feo	Ca _{ex}	Mg _{ex}	CEC	
		g kg⁻¹	g kg⁻¹	g kg⁻¹	cmol	_c kg⁻¹	cmo	ol _c kg⁻¹
Vertisols	Cropland (n=3)	8.9	4.3	1.5	0.2	50.5	10.7	61
	Forest (n=3)	8.5	6.1	1.5	0.2	50.0	11.7	62
	Fruit Garden (n=3)	9.6	5.5	1.2	0.2	40.9	12.0	54
Alfisols	C (n=3)	6.0	6.3	0.6	0.2	2.1	0.8	13
	C+M (n=3)	6.7	7.5	0.4	0.2	1.2	1.0	11
	C+ML (n=3)	7.4	8.2	0.4	0.1	5.8	1.7	10

Al_o, Fe_o: Oxalate-extractable Al and Fe. Ca_{ex}, Mg_{ex}: Ammonium acetate-extractable Ca and Mg.

Materials and Methods - Chemical analysis


- > Different SOC pools by density and size fractionation (Diochon et al. 2016).
- Each fraction was analyzed by elemental analysis (C, N).

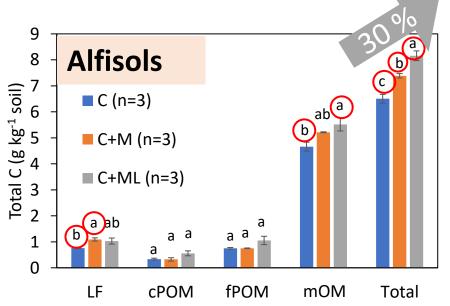


Table Soil mass distribution of physical fractions

mass(0/)		LF	cPOM	fPOM	mOM (<53 μm)	
mass(%)		LF	(2000-250 µm)	(250 -53 μm)		
Vertisols	Cropland (n=3)	0.2	18	6	76	
	Forest (n=3)	0.5	17	12	70	
	Fruit garden (n=3)	0.4	19	14	67	
Alfisols	C (n=3)	0.3	31	26	42	
	C+M (n=3)	0.5	36	27	37	
	C+ML (n=3)	0.5	34	31	35	

Results and discussions - C contents in SOC fractions

Different letters indicate significant difference between treatments (p<0.05)

- Forest management increased C contents of cPOM, fPOM, contributing higher total C contents in forest
- no significant effects on C contents in LF, mOM
- Lime and FY manure application to cropland increased C contents of mOM, contributing higher total C contents in C+ML
- no significant effects on C contents in cPOM, fPOM

What is the drivers of C contents of each SOC pool sizes?

Results and discussions – Drivers of SOC fraction

Table Correlation coefficients between C content of fractions and soil properties

Vertiols	Vertisols (n=9)	*: p<0.05		
Vertions	LF	cPOM	fPOM	mOM
рН	-0.11	-0.06	-0.24	-0.18
Total C	0.90**	0.90**	0.96**	0.35
Ca _{ex}	-0.24	-0.31	-0.09	-0.07
Mg _{ex}	0.36	0.33	0.52	-0.03
CEC	-0.06	-0.13	0.05	0.01
Alo	-0.22	-0.31	-0.10	-0.05
Feo	-0.67*	-0.62	-0.59	-0.16
mass of LF	0.97**	0.90**	0.82**	0.06
mass of cPOM	0.30	0.30	-0.12	-0.38
mass of fPOM	0.59	0.62	0.74*	0.40
mass of mOM	-0.69*	-0.72*	-0.67	-0.22

No correlation between every fractions and minerals (Al_o, Fe_o, Ca_{ex}) ⇒ cPOM, fPOM, mOM was not related to Al, Fe oxides, Ca contents, and mass of

 \Rightarrow CPOIN, TPOIN, MOIN was not related to AI, Fe oxides, Ca contents, and mass of mOM

Results and discussions – Drivers of SOC fraction

Table Correlation coefficients between C content of fractions and soil properties

Alfisols		Alfisols (n=9)	*: p<0.05	*: p<0.05 <i>,</i> **: p<0.01	
		LF	cPOM	fPOM	mOM
рН		0.62	0.69*	0.63	0.72*
Tot	al C	0.55	0.58	0.64	0.76*
Ca	a _{ex}	0.00	0.60	0.82**	0.62
Μ	g _{ex}	0.31	0.82**	0.84**	0.65
С	EC	-0.75*	-0.47	-0.24	-0.47
А	l _o	-0.81**	-0.45	-0.44	-0.78*
F	e _o	-0.46	-0.29	-0.22	-0.26
mass of LF		0.91**	0.43	0.07	0.47
mass o	f cPOM	0.77*	0.15	-0.24	0.18
mass of fPOM		0.00	0.53	0.85**	0.71*
mass o	of mOM	-0.79*	-0.48	-0.27	-0.61

Strong and negative correlation between mOM and Al_o

- ⇒<u>mOM-C is related to Al oxides, and decreasing with Al_o contents, possibly caused by pH increase (from pH 6.0 to 7.4)</u>
- Positive correlation between cPOM, fPOM and Ca_{ex} and Mg_{ex}

⇒cPOM- and fPOM-C are associated with Ca/Mg, such as ion-bounding, in Alfisols

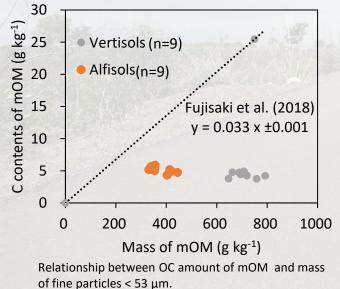
Summary 1

In southern India,

(1) Effect of land management on SOC fraction

Vertisols: Forest management (>30yrs) increased C from 5.0 to 7.8 g C kg⁻¹, mainly contributed by cPOM (17 % of increased C) and fPOM (24 % of increased C)

Alfisols: Lime and Farmyard manure application in cropland (5yrs) increased C from **6.5 to 8.2 g C kg**⁻¹, mainly contributed by mOM (52 % of increased total C)


Summary 2

In southern India,

(2) Drivers of C accumulation (caused by land management) for each fraction

Vertisols: Organo-mineral interaction of Al/Fe/Ca in cPOM, fPOM, mOM was not clear (=different from "Beyond Clay" theory; Rasmussen et al. (2018)) ⇒It indicates there should be another SOC stabilization mechanism in addition to organo-mineral interaction in "Vertisols of dry tropics"

Alfisols: mOM is related to Al oxides, and decreasing with Al_o contents, maybe caused by pH increase (from pH 6.0 to 7.4)

Question

Why were OC saturation levels of Alfisols and Vertisols low, especially in Vertisols, compared to referred meta-data (Fujisaki et al. (2018)).

Acknowledgement; Japanese Society for the Promotion of Science, KAKENHI, Grant Numbers #17H06171, #17K19308, #18H02315, and #20H03113 financially supported this work.