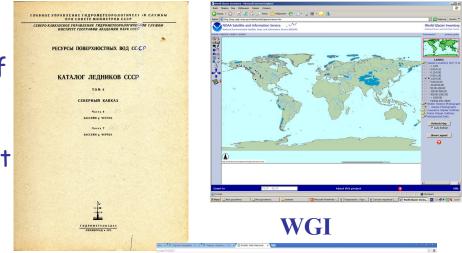
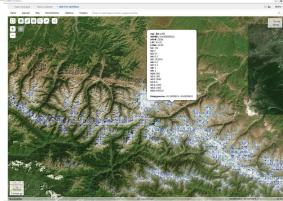
New Glacier Inventory of the Russian glaciers.


Taiana Khromova, Gennady Nosenko, Andrey Glazovsky, Stanislav Nikitin, Anton Muraviev, Ivan Lavrentiev.


Institute of Geography RAS, Moscow, Russia

tkhromova@igras.ru

- •The first detailed glacier inventory of the USSR was published in 1960-1980.
- •It was the only systematic assessment of the state of glacial systems in Russia for a long time
- •Identification of the glaciers was based on aerial photographs as well as on topographic maps (1957).
- •Glacier area was calculated by mechanically planimetering the surface.
- •Now available as a part of World Glacier Tryentory (WGT)
- Glacier Inventory (WGI) \cdot Despite the huge amount of satellite data, there was no system information about the state of glaciers in Russia until recently.
- •The results of individual studies are fragmentary and sometimes contradictory. Some of them accumulated in GLIMS and RGI

Project objectives

- ·Creation of an inventory of glaciers in Russia based on modern satellite data
- ·Use unified methodological approaches taking into account international standards
- The inventory must be compatible with international databases WGI, GLIMS, WGMS, RGI
- The basis for glacier monitoring
- ·Online access

Data sources

- ·Satellite data (Sentinel, ASTER, Landsat)
- ·Glacier inventory of the USSR
- Scientific publications

Methods

- ·Manual (expert)deliniation of glacier outlines
- Using DEM to determine ice divides and the altitude parameters of glaciers
- Uncertainty estimates using the GLIMS project methodology
- ·Creating a database on the ARCGIS Online platform

Main Page of the online Glacier Inventory

Access to regional data Project objectives, data, methods, funding

Glaciers of Russia

Main page

About project

Glacier regions

Caucasus

Altai

Kuznetskii Alatau

Eastern Sayan

Baikal range

Barguzin range

Kodar Range

Khibiny

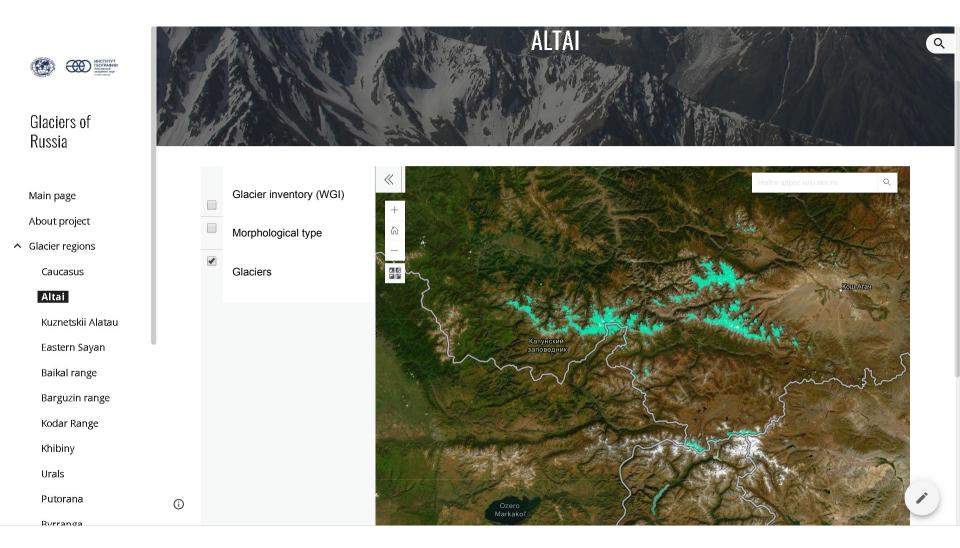
Urals

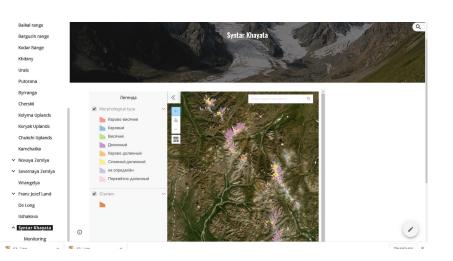
Putorana

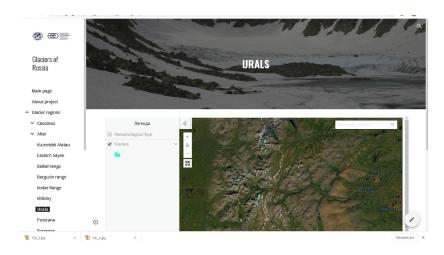
Byrranga

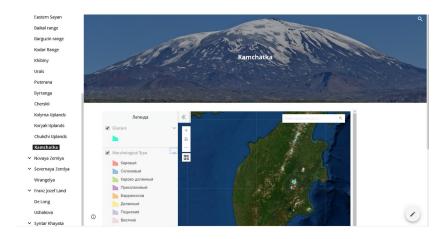
Cherckii

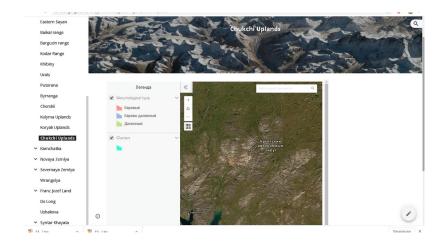
(i)


1- Northern Caucasus, 2 – Altai, 3 - Kuznetskii Alatau, 4- Eastern Sayan, 5 - Baikal range, 6 - Barguzin range, 7 - Kodar Range, 8 - Khibiny, 9 - Urals, 10- Putorana, 11Byrranga, 12 - Orulgan, 13 - Cherskii, 14 - Suntar Khayata, 15 - Kolyma Uplands, 16 - Koryak Uplands, 17 - Chukchi Uplands, 18 - Kamchatka, 20 Novaya Zemlya, 22.Severnaya Zemlya, 23 Franz Jozef Land, 24 De Long 25 Wrangelya, 26 Ushakova

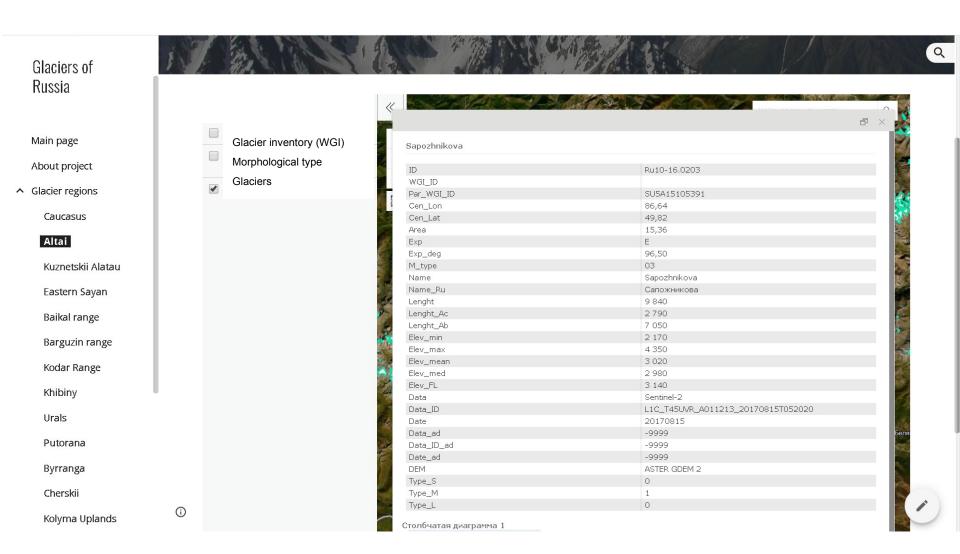


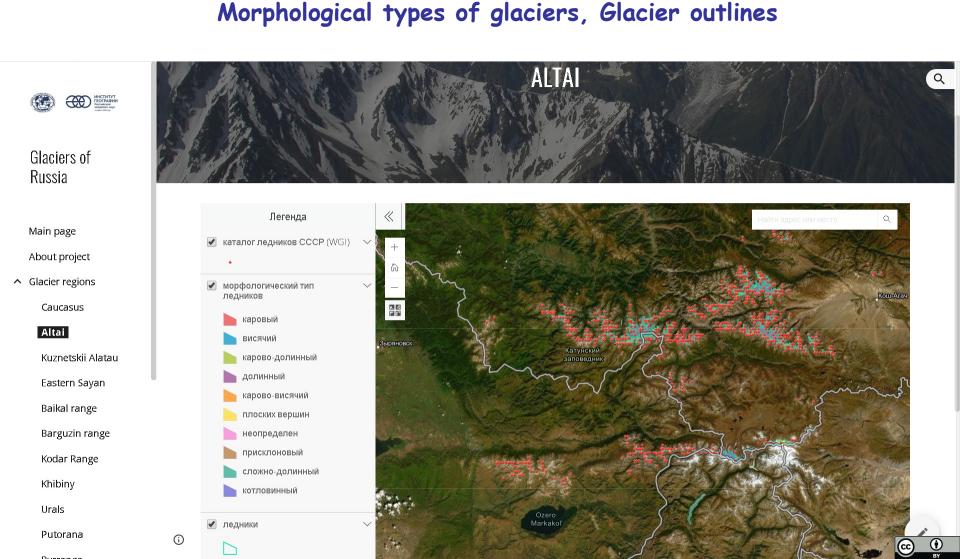



Access to regional data

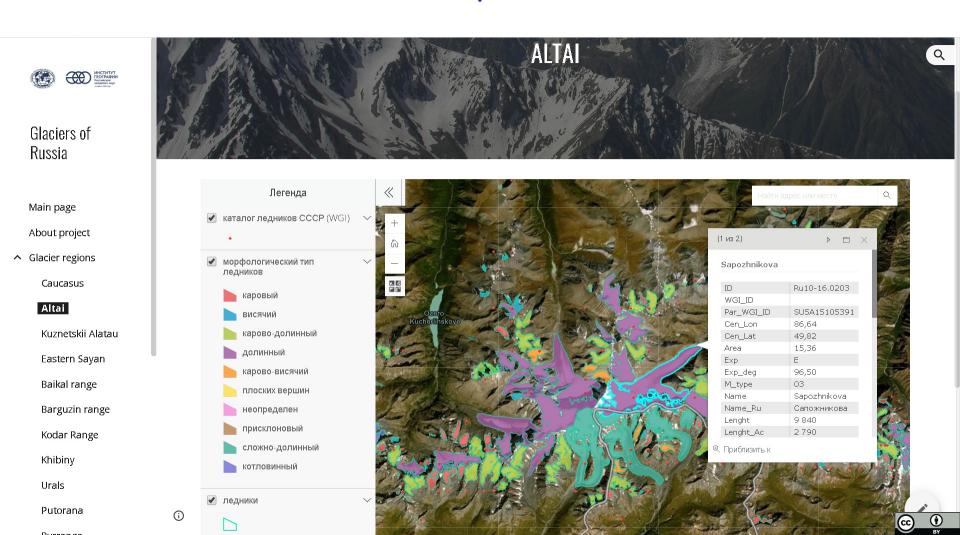


Access to regional data



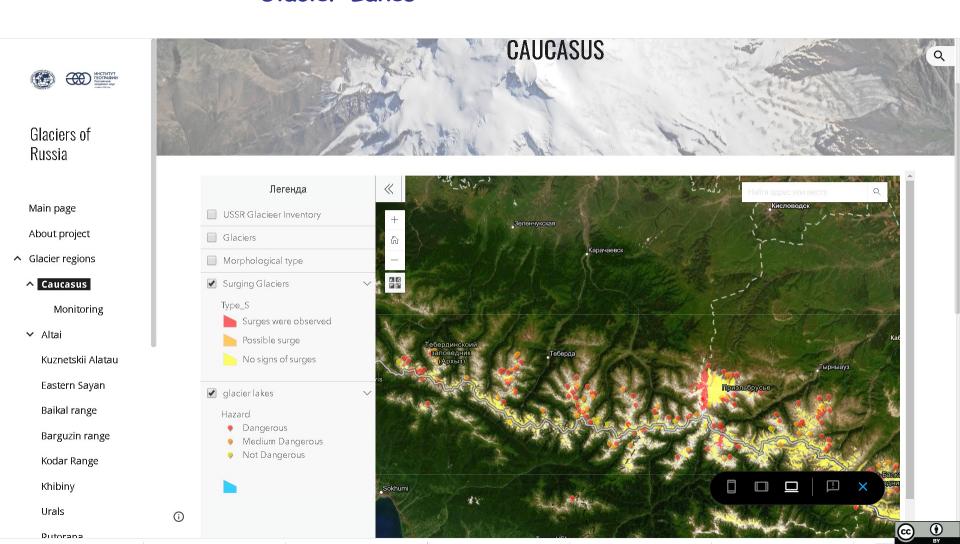

Glacier inventory attribute tables

Visualization of Glacier Inventory Data


The data of Glacier Inventory of USSR

Morphological types of glaciers

Glacier inventory attribute tables



Visualization of Glacier Inventory Data

Surging Glaciers

Glacier Lakes

Statistics

Glaciers of Russia

Main page

About project

Glacier regions

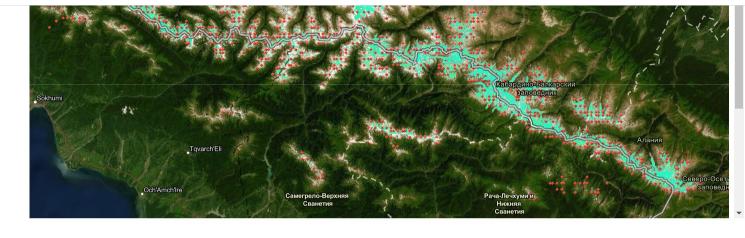
^ Caucasus

Monitoring

✓ Altai

Kuznetskii Alatau

Eastern Sayan


Baikal range

Barguzin range

Kodar Range

Khibiny

Urals

Morphological type of glaciers

M-type	Morphological type	area, km²	number	Mean size, km²
02	Compound valley	180,81 ±8,64	19	9,52
03	Valley	405,47 ±25,04	256	1,58
04	Cirque - valley	159,02±11,62	198	0,80
05	Cirque	89,85±13,11	696	0,13
06	Hanging	36,37 ±6,13	428	0,08
28	Cirque-hanging	120,07 ±12,00	378	0,32
10	Flat peaks	0,27±0,03	2	0,14
08	Slope	3,80±0,70	62	0,06
29	Conical peaks	71,27 ± 2,48	9	7,92
00	Not defined	0,14±0,05	6	0,02
AN ROUTE	Total	1067,07±79,80	2054	0,52

Glacier Area

Glacier size, km²	Area, km ²	Number
>5	387,87 ± 16,62	38
2–5	197,88 ± 11,55	64
1–2	165,49 ± 11,67	120
0,5-1	120,30 ± 10,57	169
0,1-0,5	152,99 ± 19,58	708
<0,1	42,54 ± 9,81	955
Total	1067,07 ± 79,80	2054

Glaciers of Russia

Main page

About project

△ Glacier regions

Caucasus

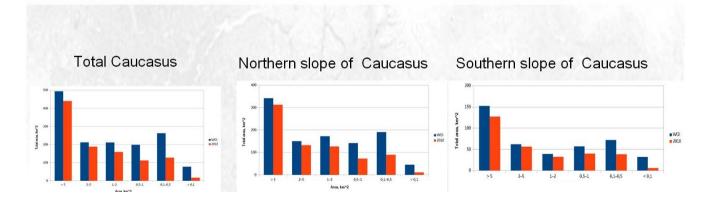
Monitoring

✓ Altai

Kuznetskii Alatau

Eastern Sayan

Baikal range


Barguzin range

Kodar Range

Khibiny

Glacier changes

Glacier size km²		To	otal area km²					Nur	nber (of glad	ciers			Glacier area change WGI (1960)- 2018 y.					
		2018 y.		7	VGI (196	0)		2018 y.		W	GI (1	960)		km ²			%		
	all	N	S	all	N	S	all	N	S	all	N	S	all	N	S	all	N	S	
>5	440,45±20,41	313,07±14,04	127,38±6,37	494,4	341,9	152,5	97	52	45	39	29	10	-53,95	-28,83	-25,12	-10,9	-8,4	-16,5	
2-5	188,80±11,94	132,42±8,57	56,38±3,38	212,4	150,4	62,0	108	72	36	63	45	18	-23,60	-17,98	-5,62	-11,1	-12,0	-9,1	
1-2	158,23±11,66	126,99±9,42	32,24±2,24	211,7	172,8	38,9	161	125	36	115	91	24	-52,47	-45,81	-6,66	-24,8	-26,5	-17,1	
0,5-1	112,54±10,49	72,74±6,61	39,80±3,89	198,8	141,8	57,0	223	134	89	159	104	55	-86,26	-69,06	-17,20	-43,4	-48,7	-30,2	
0,1-0,5	128,03±16,90	89,77±11,72	38,26±5,17	262,92	190,9	72,0	674	459	215	563	393	170	-134,89	-101,13	-33,76	-53,1	-53,0	-46,9	
<0,1	17,19±3,73	11,29±2,40	5,90±1,33	77,75	45,6	32,2	333	211	122	314	201	113	-60,56	-34,31	-26,25	-77,9	-75,2	-81,6	
Всего	1046,24±75,13	746,28±52,76	299,96±22,37	1458	1043,4	414,6	1596	1053	543	1253	863	390	-411,73	-297,12 ±52,76	-114,61	-28,2	-28,5	-27,6	

1

Acceleration of glacier decrease rate

	number	area, km²	decrease , km²	%	decrease rate , %/year
2018 (IGRAN)	2048	1066,9	126,3	10,6	2,6
2014 (Telidze Wheate, 2018)	2020	1193,2	288.9 ± 12.8	19.5 ± 4.6	0.69
1986(Telidze Wheate, 2018)	2209	1482,1	192.8 ± 8.4	11.5 ± 4.4	0.44
1960(Telidze Wheate, 2018)	2349	1674,9			

Monitoring

Q

Monitoring

Area change of individual Caucasus glaciers 2000-2010-2014-2018yy

Glaciers of Russia

Main page

About project

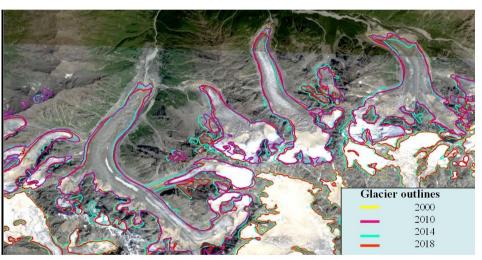
△ Glacier regions

Caucasus

Monitoring

✓ Altai

Kuznetskii Alatau


Eastern Sayan

Baikal range

Barguzin range

Kodar Range

Glacier area change, km2

	Shkhelda	Bashkara	Kashkatash
2000	7,7	4,1	3,1
2010	7,3	3,7	3,0
2014	8,3	4,0	3,1
2018	6,8	3,4	2,5

Monitoring

Glacier Change

Altai

Glaciers of Russia

Main page

About project

- Glacier regions
- Caucasus
- Altai

Monitoring

Kuznetskii Alatau

Eastern Sayan

Baikal range

Barguzin range

Altai.

1

823,86

690

578,21

467,74

429,85

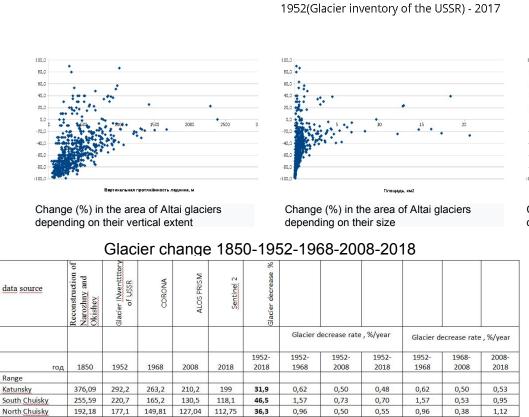
37,7

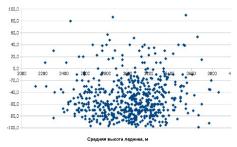
1,01

0,58

0,57

1,01


0,48


0,81

Kodar Range

Khibiny

Urals

Change (%) in the area of Altai glaciers depending on their average altitude

Glacier Gelo change

1968-8.05km2 2008-7.07km2 2018-6,69km2

Change of Glacier outlines location 2000/2008(RGI)-2019 Correction of Glacier ice divides location

PAGENTAL 1885

Novaya Zemlya

Eastern Sayan

Baikal range

Barguzin range

Kodar Range

Khibiny

Urals

Putorana

Byrranga

Cherskii

Kolyma Uplands

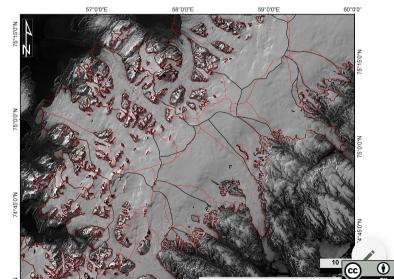
Koryak Uplands

Chukchi Uplands

Kamchatka

Novaya Zemlya

Monitoring


- Severnaya Zemlya
 - Wrangelya
- ➤ Franz Jozef Land
 De Long

Ushakova

Glacier Change 2000/2003/2008(RGI) - 2019

Monitoring

Change of Glacier outlines location 2001(RGI)-2016

Correction of Glacier ice divides location

Franz Jozef Land

Glacier change 2001(RGIv6) - 2016

Urals Putorana

Khibiny

Eastern Sayan Baikal range Barguzin range Kodar Range

Byrranga

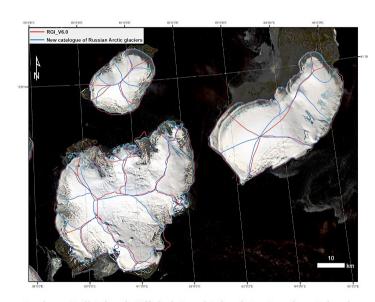
Cherskii

Kolyma Uplands

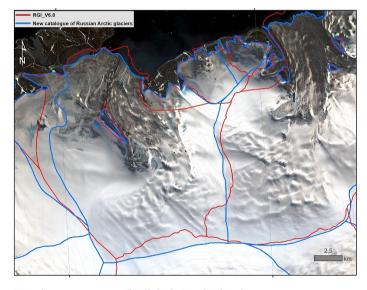
Koryak Uplands

Chukchi Uplands

Kamchatka


- ▼ Novaya Zemlya
- ➤ Severnaya Zemlya
- Wrangelya
- Franz Jozef Land

Monitoring


1

De Long

Ushakova

Graham Bell Island, Wilzhek Land Island, La Ronciere Island

Northeastern part of Wilzhek Land Island

INSTITUTE OF GEOGRAPHY Russian Academy of Sciences

Kamchatka

Baikal range

Barguzin range

Kodar Range

Khibiny

Urals

Putorana

Byrranga

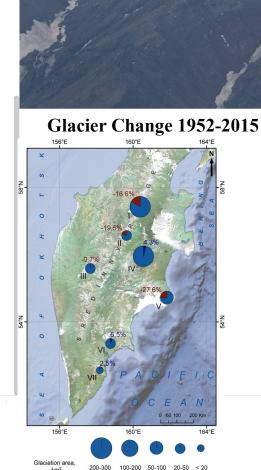
Cherskii

Kolyma Uplands

Koryak Uplands

Chukchi Uplands

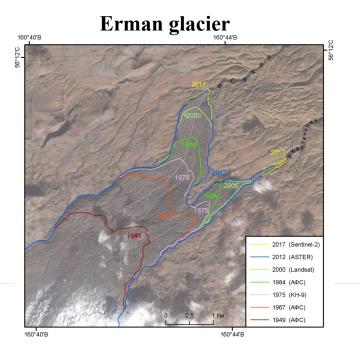
Kamchatka


Monitoring

- ➤ Novaya Zemlya
- ➤ Severnaya Zemlya
 - Wrangelya
- ✓ Franz Jozef Land

De Long

Ushakova


▼ Syntar Khayata

4,3% increase of

decrease of

-16,6%

MONITORING

INSTITUTE OF GEOGRAPHY Russian Academy of Sciences

Glaciers of Russia

Main page

About project

Glacier regions

Caucasus

✓ Altai

Kuznetskii Alatau

Eastern Sayan

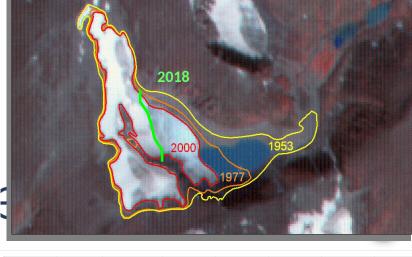
Baikal range

Barguzin range

Kodar Range

Khibiny

△ Urals


Monitoring

Dutorana

Monitoring

	ID	Name		S (1953), KM2	S (2000) KM2	S (2018) KM2	ΔS(2000-2018) км2	ΔS(2000-2018), %	
1	1	KARSKYJ_S		0.80	0.506	0.424	0.082	16	
2	1	KARSKYJ N		0.80	0.306	0.424	0.051	45	
3	2	TROITSKOGO		0.12	0.052	0.062	0.037	70	
4	3					0.016		52	
- H		ODINOKIJ		0.06	0.062		0.032		
5	5	TERENTIEVA		0.30	0.191	0.146	0.046	24	
6	6	MGG		0.63	0.429	0.312	0.117	27	
7	7	MIIGAIK		0.50	0.293	0.152	0.141	48	
8	8	DOLGUSHINA		0.92	0.505	0.399	0.106	21	
9	9	ВОСНА		0.22	0.212	0.159	0.052	25	
10	10	PARUS		0.09	0.056	0.041	0.015	26	
11	11	ALESHKOVA		0.53	0.309	0.217	0.092	30	
12	13	KHOOTINSKY		0.18	0.177	0.098	0.079	45	
13	14	STCHUCHIJ		0.70	0.361	0.307	0.054	15	
14	15	TRONOVA		0.23	0.210	0.181	0.029	14	
15	17	SYNOK		0.25	0.192	0.137	0.055	29	
16	18	MGU		1.16	0.606	0.260	0.346	57	
17	19	OLENIJ		0.12	0.086	0.039	0.047	55	
18	20	STANTSYONNYJ		0.07	0.046	0.019	0.027	59	
19	21	ANUCHINA		0.17	0.116	0.051	0.065	56	
20	22	SKRYTYJ		0.13	0.117	0.029	0.088	75	
21	23	AVGEVICHA		0.15	0.089	0.040	0.050	56	
22	24	AVSYUKA		0.18	0.152	0.071	0.081	53	
23	25	S IUMSKOGO		0.25	0.153	0.085	0.069	45	
24	26	C BRUCHEVA		0.40	0.310	0.222	0.088	28	
25	27	IGAN		1.25	1.025	0.604	0.421	41	
26	28	FOTOCEODEZISTO	οv	0.06	0.058	0.016	0.041	72	
27	127	BAKLUNDA		0.24	0.093	0.056	0.037	40	
28	128	KULIKA		0.22	0.125	0.062	0.063	51	
29	129	BOL'SHOI USINSK	Y	0.70	0.629	0.343	0.287	46	
30	131	CHERNOVA		0.27	0.190	0.092	0.097	51	
31	133	BERGA		0.42	0.225	0.182	0.043	19	
32	134	KOVAL'SKOGO		0.21	0.152	0.084	0.067	44	
33	135	LEPIOKHINA		0.10	0.102	0.052	0.050	49	
34	136	KALESNIKA		0.30	0.196	0.121	0.075	38	
35	137	KHABAKOVA		0.35	0.109	0.033	0.076	70	
36	138	PRILIEPYSH		0.16	0.140	0.061	0.079	56	
37	142	MALYSH		0.14	0.125	0.083	0.042	34	
38	143	MARKOVA		0.30	0.159	0.143	0.016	10	
		Итого:		12.88	8.669	5.426	3.243	37	

years	1953	1960	1968	1974	1977	2000	2018
area, км2	0,98	0,93	0,86	0,79	0,76	0,53	0,26

Reduction of glaciers area of the Polar Urals from 2000 to 2018

Change in the area of the MGU glacier from 1953 to 2018

INSTITUTE OF GEOGRAPHY Russian Academy of Sciences

Conclusion

- ·The new glacier inventory of Russia is being created
- ·It is mostly based on the latest remote sensing data
- ·An unified methodology is used
- The inventory is compatible with international databases WGI, GLIMS, WGMS, RGI
- ·An online access is arranged using ARCGIS online
- Data will be provided in GLIMS and RGI
- Analysis of glacier changes based on the data of the new glacier inventory shows:
 - the generally reduction of glaciers continues
 - ·an acceleration of glacier decrease rate in some regions during last decades
 - ·a large variability in the regions as well as in the behavior of individual glaciers very much depending on the orographic factors, the morphology, size, local meteorological conditions and natural

BY

Acknowledgements.

The presentation includes the results obtained in the framework of the following research projects:

Nº 0148-2019-0004 of the Research Plan of the Institute of Geography of the Russian Academy of Sciences,

№ 05/2019/RGS-RFBR supported by the Russian Geographical Society

№ 18-05-60067 supported by RFBR.