Chaos in Climate Change Impacts Estimates

Emanuele Massetti and Emanuele Di Lorenzo

Georgia Institute of Technology

EGU — General Assembly — May, 2020

Preliminary - Do not cite and do not redistribute

Motivation

- Climate change impacts mostly depend on local climate change
- There is wide uncertainty in future climate at local level
- The literature has largely ignored this uncertainty
- Implications for policy makers are important

Sources of Uncertainty

- Future climate projections have three main sources of uncertainty

1. Emissions scenario (RCP 8.5, RCP 2.6, etc...) - RCP Scenario Spread
2. Model uncertainty (NCAR, CMCC, Hadley, ...) - Model Spread
3. Chaotic dynamics of weather, for the same model - Internal Variability

- The literature on climate change impacts is

1. mostly concerned with the Scenario Spread,
2. modestly concerned with Model Spread,
3. not concerned with Internal Variability.

Understanding Internal Variability

- Deterministic Chaos
- The climate system has chaotic dynamics: very small changes to initial conditions lead to vastly different outcomes
- Each model run is fully deterministic, but we do not know exactly the initial conditions
- Extremely small changes to initial conditions lead to large different outcomes
- As initial conditions are essentially random, one single scenario is a random realization from the pdf of all scenarios for a model-emission scenarios combination
- Climate Models typically provide only one random future realization of climate
- The impacts literature relies on random scenarios of unknown probability

Climate Data

- CESM Large Ensemble Community Project developed at NCAR
- 40 ensemble members for RCP 8.5 and 15 ensemble members for RCP 4.5
- No data for RCP 6.0 and for RCP 2.6
- We are interested in climate change
- Change of average 2011-2040, 2041-2070, 2071-2100 seasonal temperature and precipitation wrt average 1976-2005
- We are eliminating a great deal of short-term and seasonal noise

Effect of Climate on Agricultural Land Values

The econometric climate impact model:

- Ricardian model of Eastern US agricultural land values (Massetti and Mendelsohn, 2011)
- Agricultural land values as a measure of discounted rents from agriculture
- Changes in agricultural land values measure discounted welfare effect of climate change, with adaptation

Macroregions

Impact of Climate Change on Land Values

RCP 4.5, 2041-2070

Macroregions - Entire Distribution (red) vs Ensemble Mean (blue)

Impact of Climate Change on Land Values
RCP 4.5, 2041-2070

Bootstrap distribution for each ensemble scenario, 1,000 repetitions. (NARR - tp - at 4 s)

Macroregions

Impact of Climate Change on Land Values
RCP 8.5, 2041-2070

Macroregions - Entire Distribution (red) vs Ensemble Mean (blue)

Impact of Climate Change on Land Values
RCP 8.5, 2041-2070

RCP 4.5, 2041-2070

RCP 8.5, 2041-2070

Sioux County, Iowa

Sioux County, Iowa

Percentage change of agricultural land values under RCP 4.5 in 2041-2070. Panel A: bootstrap distribution over all ensemble members with 95% conf. int. Panel B: bootstrap distribution for each ensemble member.
Source: Massetti and Di Lorenzo (2020).

Percentage change of agricultural land values under RCP 8.5 in 2041-2070. Panel A: bootstrap distribution over all ensemble members with 95% conf. int. Panel B: bootstrap distribution for each ensemble member.
Source: Massetti and Di Lorenzo (2020).

Figure 1: RCP 4.5, 2041-2070

Conclusions

- Implications for the literature
- Estimates of climate change impacts ignore large source of uncertainty
- The impacts literature should start using ensemble scenarios
- Climatologists should invest more resources in developing large ensembles
- Policy implications
- The range of possible outcomes is larger than previously thought
- In some areas, anticipatory adaptation carries large risks

