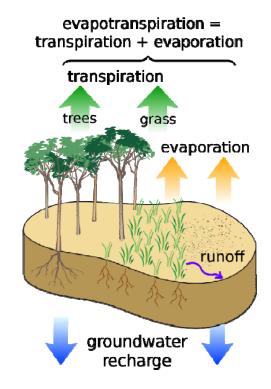
Evapotranspiration partitioning in a semiarid shrubland and its relation to spring precipitation

Lajiao Chen¹, Hongchang Hu², Maihemuti Tudaji², Yan Ma¹, and Lingjun Zhao¹

1. Aerospace Information Research Institute

2. Tsinghua University

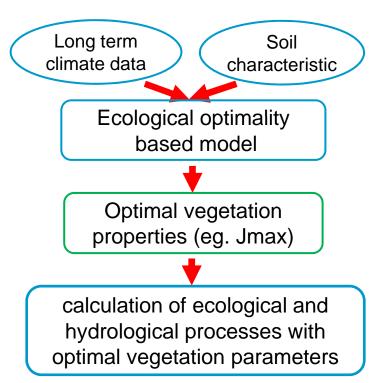

2020.5.7

1 Background

ET partitioning and its relationship to climate

- Evapotranspiration (ET) partitioning is of great importance in understanding the interaction of water and carbon cycles.
- Climate, especially precipitation, exert profound impact on ET partitioning.
- More efforts need to paid to the effect of precipitation on ET partitioning with regard to different vegetation types and different climate (Scott et al., 2006).

⁽https://en.wikipedia.org/wiki /Evapotranspiration)


1 Background

Method of ET partitioning

Traditional model

- Treat ET as if it is a physical process controlled by energy, vapor pressure, etc.
- High parameterization requirement.

• Models based on optimality

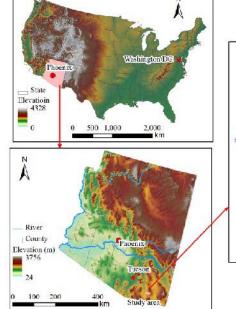
Advantages

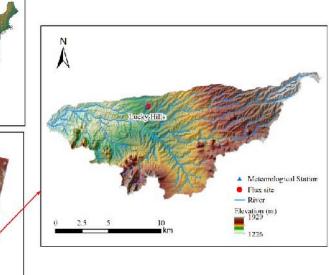
More realistic

Less parameter requirement

Problems

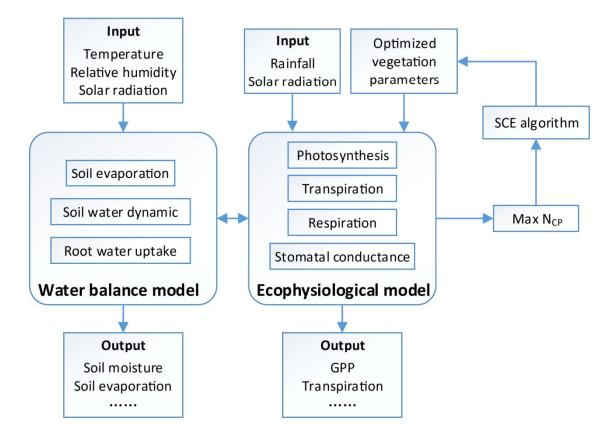
Still at the very outset, requires to examine in more conditions and more ecosystems


1 Background


*****Aim of this study

- To better understand the response of evaporation and transpiration to climate characteristics.
- To test ecological-optimality based models for ET partitioning.

Study area


- Lucky Hills site
 - USDA-ARS WGEW in southeastern Arizona
 - Climate: Typical semiarid
 - Cool winters, warm summers with annual temperature: 17 °C
 - Low precipitation with annual value of 356 mm.
 - Elevation:1372 m with slopes ranged from 3% to 8%
 - Vegetation: Shrub

* Optimality-based ecohydrological model (VOM)

• VOM (Schymanski et al, 2009) coupled a multilayered physically based water balance model and an ecophysiological gas exchange model

VOM theory basis

Optimization strategy: Max Net Carbon Profit for long term

 $NCP = A_g - R_f - R_r - R_v$

Where, A_g is the combined CO₂ uptake by trees and grasses, R_f is the foliage costs of grasses and trees combined, R_r is the root cost of grasses and trees combined, R_v is the cost associated with the vascular systems of grasses and trees and trees combined.

Optimal stomata: the slope of CO_2 uptake and transpiration is maintained constant.

$$l = \frac{\partial E_t}{\partial A_g}$$

Where, A_g is is the combined CO₂ uptake by trees and grasses, E_t is transpiration.

VOM description-optimized vegetation parameters

Vegetation parameters optimized (Schymanski et al., 2009)

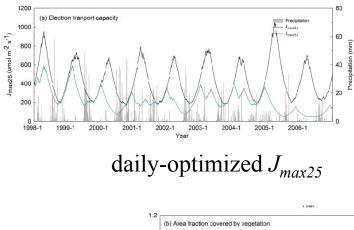
Long term optimization

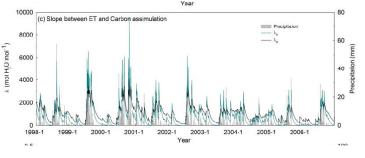
Long term optimization	Vegetation Parameters		Time Scale
Vegetation properties adapted to long-term environment, optimized by SCE optimization for the whole simulation.	Long-term vegetation parameters	Fraction of area covered by perennial vegetation ($M_{A,p}$)Thickness of root zone of perennial vegetation($y_{r,p}$)Water use parameters of perennial vegetation ($c_{\lambda f,p} \ c_{\lambda e,p}$)Water use parameters of seasonal vegetation ($c_{\lambda f,s} \ c_{\lambda e,s}$)	Constant over entire simulation period
Daily optimization		Fraction of area covered by seasonal vegetation ($M_{A,s}$)	_
Vegetation properties	Short-term	Electron transport capacity of perennial vegetation ($J_{\max 25, p}$)	
adapted in short-term environment, optimized each day based on the condition on previous day.	vegetation	Electron transport capacity of seasonal vegetation ($J_{\max 25,s}$)	Varying on a daily scale
	parameters	Root area depth distribution of perennial vegetation ($S_{adr,i,p}$)	
		Root area depth distribution of seasonal vegetation ($S_{adr.i.s}$)	

***** Data used in this study

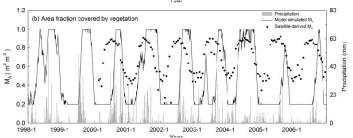
Sites	Data type	Data items	Scale	Period
Inputs	Meteorological data	Solar radiation, temperature, precipitation, relative humidity, PAR	20 min, scaled up to 1 hour	1998–2006
Validation	Flux data	water vapor flux	20 min, scaled up to 1 hour	1998–2006
	Satellite data	NDVI	16-days	2000-2006

Model parameterization


Parameters need to be specified.

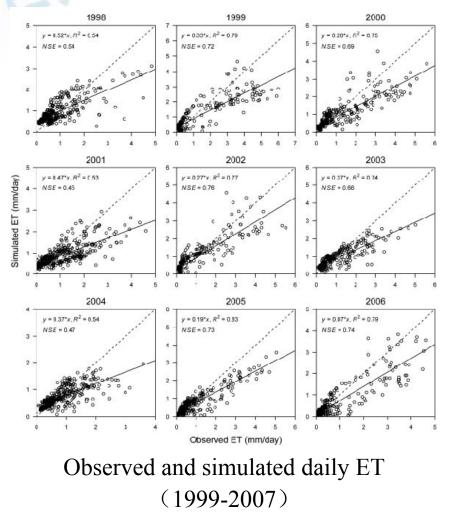

Parameters	Description	Value	
y _{r, s}	Thickness of root zone of seasonal vegetation (m)	1	-
a	Initial slope of quantum yield of electron transport (mol/mol)	0.1	
H _a	Rate of exponential increase of <i>Jmax</i> with temperature (J/mol)	159500	
H _d	Rate of exponential decrease of $Jmax$ with temperature (J/mol)	200000	
T _{opt}	Optimum temperature for electron transport (K)	305	
c _{rv}	Proportionality constant for water transport carbon costs (mol/m ³)	$2.2*10^{-6}$	Vacatation nononatona actina
tcf	Turnover cost factor for foliage (mol/m ² /s)	$2.2*10^{-7}$	Vegetation parameters setting
c_{rl}	Leaf respiration coefficient	0.07	
c_{Rr}	Root respiration rate per volume of fine roots	0.0017	
rurfmin	Minimum root surface area (m^2/m^3)	0.08	
rurfinit	Initial root surface area (m^2/m^3)	0.08	
r_r	Mean radius of fine roots (m)	0.3*10 ⁻³	
~~~~	Parameter determining the maximum daily growth increment of	0.1	
growthmax	root surface are		
prootmg	Constant root balance pressure of 1.5 MPa in grasses	150	

	Parameters	Description	Value
Soil parameters setting	Ζ	Average depth of the pedosphere (m)	2.5
	δ	Thickness of soil sublayers (m)	0.5
	K _{sat}	Saturated hydraulic conductivity (mm/s ⁻¹ )	1.28*10 ⁻⁵
	$a_{vG}$	Soil parameter of Van Genuchten water retention (m ⁻¹ ) (-)	7.5
	$n_{vG}$	Soil parameter of Van Genuchten water retention model (-)	1.89
	$\theta_r$	Residual soil water content (m ⁻³ /m ⁻³ )	0.065
	$\theta_s$	Statured soil water content (m ⁻³ /m ⁻³ )	0.36


### Model parameterization

The model is firstly applied to achieve the optimal vegetation parameters. The *NCP* is about 130.2 mol/ $m^2$  for the 9 years.

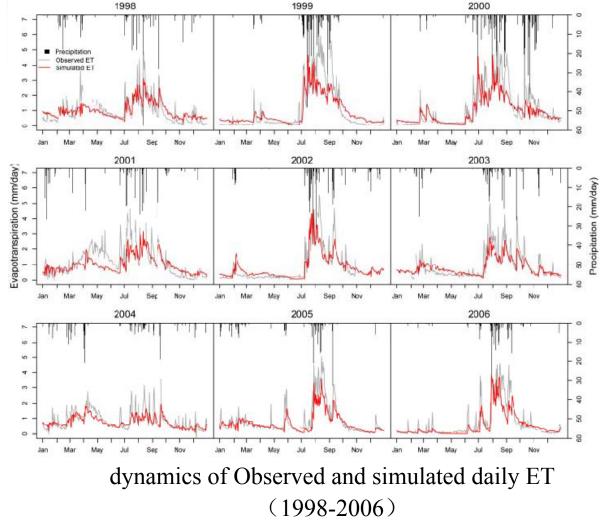





Vegetation water use parameters



Area covered by seasonal vegetation Simulated VS satellite-derived MA Simulated values follow the seasonal dynamic of satellitederived MA

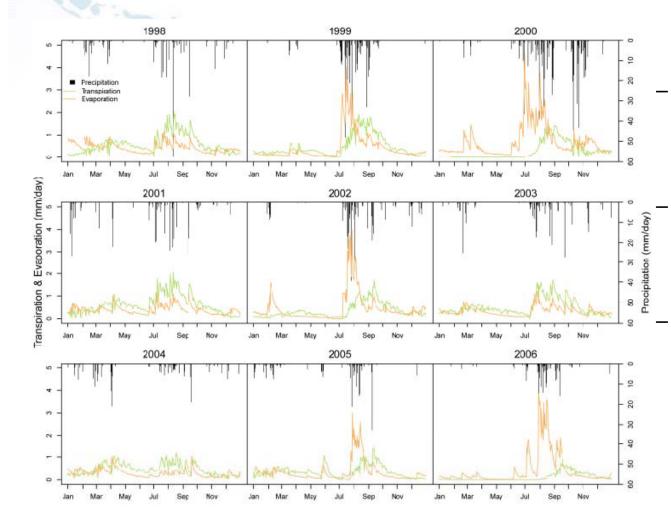

Model validation with site observations



3

- Most of years are simulated well with the dots distributed along the 1:1 lines.
- Good correlation with R² square higher than 0.8 for all of the years.
- Acceptable Nash-Sutcliffe coefficient.

### Model validation with site observations

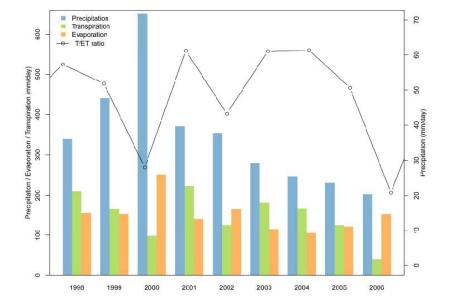



3

- Variation pattern of the simulated ET corresponds with the measured ET.
- Simulated ET is mainly concentrated in monsoon when rainfall concentrates.
- A tendency of underestimation of ET in some years.

### Evaporation and transpiration

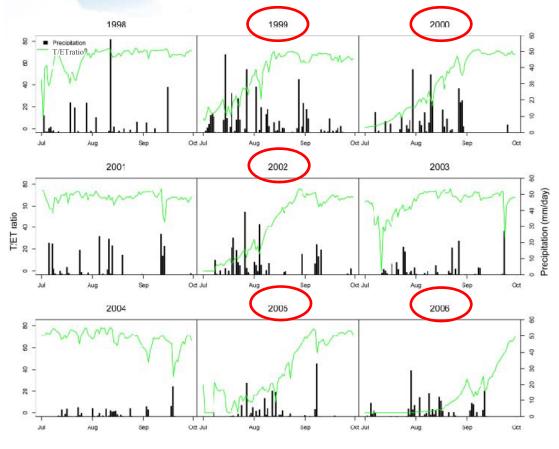
3




- Evaporation and transpiration mainly occur in monsoon.
- Evaporation responds immediately to precipitation events Transpiration shows a
- lagged response to
- precipitation events.

### Evaporation and transpiration

3


Plant transpiration accounts for 49% of the total ET for the period from 1998 to 2006.



- *T/ET* ratio varies dramatically among different years, from 21% to 61%
- No evident relationship of *T/ET* ratio with the amount of precipitation

### **Dynamic of** *T/ET* ratio in monsoon

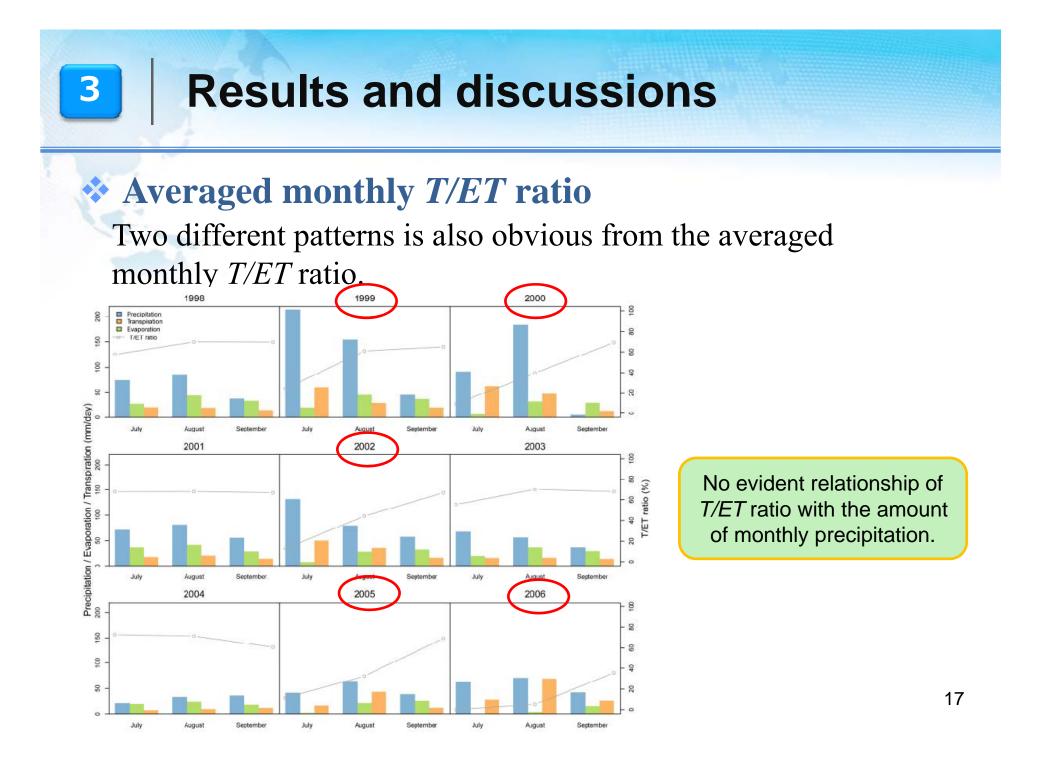
T/ET ratio dynamic in monsoon demonstrates two different patterns.



3

Pattern 1: 1999, 2000, 2002, 2005, and 2006

 Low *T/ET* ratios at the beginning and an increased trend in the monsoon


Pattern 2: 1999, 2000, 2002,

#### 2005, and 2006

Relatively high *T/ET* ratio

during the monsoon

Dynamic of T/ET ratio in monsoon



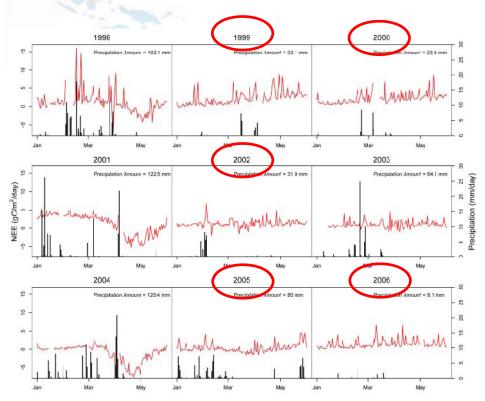
### ***** Impact of spring precipitation on ET partitioning

Days and amount of spring precipitation by size class.

Year –	0 – 5	5 – 10	> 10	 Total days / total  amount (mm)	
	Days / amount (mm)	Days / amount (mm)	Days / amount (mm)		
1998	28 / 28.4	5 / 34.3	3 / 40.4	36 / 103.1	
1999	8 / 15.6	1 / 7.4	0 / 0	9 / 23.0	
2000	8 / 7.2	2 / 16.3	0 / 0	10 / 23.5	
2001	23 / 22.9	3 / 23.1	4 / 76.6	30 / 122.6	
2002	13 / 5	4 / 26.9	0 / 0	17 / 31.9	
2003	20 / 23.5	1/5.3	2/35.3	23 / 64.3	
2004	19 / 26.9	7 / 47.8	3 / 45.7	29 / 120.4	
2005	32 / 46	5 / 34	0 / 0	37 / 80	
2006	7 / 8.1	0 / 0	0 / 0	7 / 8.1	

3

Pattern1: 1999, 2000, 2002, 2005, and 2006


- Dry spring with extremely low spring precipitation
- No precipitation with size >10 mm

#### Pattern 2: 1998, 2001, 2003, and 2004

Spring precipitation with size >10 mm

High spring precipitation, but small size (0-5 mm)

### Impact of spring precipitation on ET partitioning



3

Carbon uptake in spring

Pattern1: 1999, 2000, 2002, 2005, and 2006

No evident CO₂ uptake during the spring (No precipitation with size >10 mm)

#### Pattern 2: 1998, 2001, 2003, and 2004

Evident CO₂ uptake except for 2003

(Spring precipitation with size >10 mm)

10 mm class size might be the efficient precipitation for shrub growth in this area.

# 4 Conclusion

- In this study, we conduct a study of ET partitioning in a semiarid shrubland with an optimality-based ecohydrological model VOM.
- VOM model can reasonably predict ET and ET components in semiarid shrubland ecosystem.
- Overall, T/ET ratio is 49% for the study period with a peak of 61%.
- Different years demonstrate different patterns of T/ET ratio dynamic in monsoon.
- Spring precipitation especially the size of the precipitation have a significant influence on the T/ET ratio in monsoon.

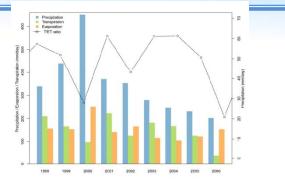
# Thank you for your attention!





July

August


September

20

0

July

August



00

80

8

9

8

00

0 40 60 80 T/ET ratio (%)

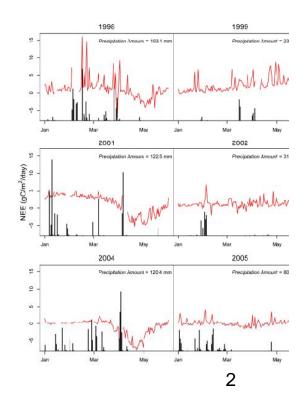
20

8

8

80

40


8

September

July

August

September

