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Introduction Strong-Velocity Pulses from Simulations

Near-fault ground motions with strong pulses bring significant damage to nearby structures. The  The rupture initiates at the edge of the fault and propagates with a constant rupture velocity (2.4 cm/s, 0.8 times the S-wave velocity). The rupture area is equal to 7x5 km? and
period and the amplitude of the strong-velocity pulses are then especially critical for structuralen-  the magnitude of the simulated cases sets as Mw 6.0. To analyze the impact of the asperity on pulse properties, we implemented a simple asperity with an associated magni-

gineering and seismic hazard assessment. Several studies revealed that the pulse periods scaled  tyde of Mw 5.8 in four simulations cases. Since the pulses were found in earthquakes with different mechanisms, we also tested the impact of various fault dip angles with ho-
with earthquake sizes and proposed empirical relationships between pulse periods and earth-  mogeneous slip distributions.
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